首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammation is a central issue in medicine. Inflammatory processes may be local or systemic, acute or chronic, and they may be benign or fatal. In bacterial or viral infections fast and reliable diagnosis is essential for appropriate treatment, e.g. antimicrobial therapy. The time to diagnosis is critical because uncontrolled infections may lead to sepsis with a mortality rate close to 50%. Beside clinical signs, laboratory markers are important in detecting, differentiating, and monitoring inflammation, particularly acute infections. Currently several inflammation markers including leukocyte count and leukocyte differentiation, C-reactive protein (CRP), procalcitonin (PCT), and interleukins (IL) 6 and 8, is available, and potential future serum markers are under development. In this article the clinical use of these markers in routine laboratory and in point-of-care testing is described and the diagnostic value of the four groups of laboratory marker is compared. Current data show that leukocyte count or, better, neutrophil count, CRP, and PCT are well suited to support of rapid diagnosis of inflammation and infections in children and adults whereas measurement of IL-6 and 8 are preferable for detection of sepsis in neonates.  相似文献   

2.
Point-of-care testing (POCT) in patients with ischemic heart disease is driven by the time-critical need for fast, specific, and accurate results to initiate therapy instantly. According to current guidelines, the results of the cardiac marker testing should be available to the physician within 30 min (“vein-to-brain” time) to initiate therapy within 60–90 min (“door-to-needle” time) after the patient has arrived at the emergency room or intensive care unit. This article reviews the current efforts to meet this goal (1) by implementing POCT of established biochemical markers such as cardiac troponins, creatine kinase MB, and myoglobin, in accelerated diagnosis and management workflow schemes, (2) by improving current POCT methods to obtain more accurate, more specific, and even faster tests through the integration of optical and electrochemical sensor technology, and (3) by identifying new markers for the very early and sensitive detection of myocardial ischemia and necrosis. Furthermore, the specific requirements for cardiac POCT in regard to analytical performance, comparability, and diagnostic sensitivity/specificity are discussed. For the future, the integration of new immunooptical and electrochemical chip technology might speed up diagnosis even further. However, every new development will have to meet the stringent method validation criteria set for corresponding central laboratory testing.  相似文献   

3.
Hwang KS  Lee JH  Park J  Yoon DS  Park JH  Kim TS 《Lab on a chip》2004,4(6):547-552
We report on a novel technique of resonant frequency shift measurement based on a nanomechanical cantilever with a PZT actuating layer for label-free detection of a prostate-specific antigen (PSA) in a liquid environment. The nanomechanical PZT thin film cantilever is composed of SiO(2)/Ta/Pt/PZT/Pt/SiO(2) on a SiN(x) supporting layer for simultaneous self-exciting and sensing; it was fabricated using a standard MEMS (micro electromechanical system) process. The specific binding characteristics of the PSA antigen to its antibody, which is immobilized with Calixcrown self-assembled monolayers (SAMs) on a gold surface deposited on a cantilever, are determined to a high sensitivity. For the bioassay in a liquid environment, a liquid test cell with a 20 microl volume reaction chamber has been fabricated, using a bonding technique between poly(dimethyl siloxane) (PDMS) bilayers. An observed trend of resonant frequency change with respect to time could be explained by the binding kinetics due to the Langmuir isotherm and diffusion and by the effects of a small volume reaction chamber. In the saturated regimes, the resonant frequency of the cantilever increased with increase of the PSA concentration in the reaction chamber, showing that the trend of the resonance frequency change was similar to that of the fluorescence results. The saturated resonance frequency shift of the cantilever was proportional to the PSA antigen concentration of analyte solution.  相似文献   

4.
5.
A new, highly sensitive fluorescent sensor for Zn(II) ion (a tris(2-pyridylmethyl)amine derivative) shows very strong binding and Zn(II) concentration-dependent biexponential time-resolved fluorescence (TRF) decay profiles that can be used for ratiometric estimates of Zn(II) concentrations. The ligand-metal complexes were characterized in solution by spectroscopic techniques and in the solid state by X-ray crystallography. The TRF studies revealed that the sensor aggregates in the absence of Zn(II) in a ligand concentration-dependent manner, a complication that is discerned by TRF but not by steady-state fluorescence ratiometric sensing techniques. It is shown that the same TRF methods are highly useful for monitoring Zn(II) concentrations in A549 epithelial lung cells in vitro and that the results were consistent with those in solution.  相似文献   

6.
Cui G  Ye Z  Chen J  Wang G  Yuan J 《Talanta》2011,84(3):971-976
Time-resolved (or time-gated) luminescence detection technique using lanthanide chelates as luminescent probes is a widely used and highly sensitive method for the biological applications. The developments of various functional lanthanide probes that can selectively recognize the biological targets are the essential objective of the technique. In this work, a unique Tb3+ chelate-based luminescent probe, N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-(p-aminophenoxy)methylene-pyridine] tetrakis(acetate)-Tb3+(BMPTA-Tb3+), has been designed and synthesized for highly selective and sensitive time-resolved luminescence detection of one highly reactive oxygen species (ROS), hydroxyl radical (OH). The probe is almost non-luminescent, and can selectively react with hydroxyl radical to afford a highly luminescent Tb3+ chelate, N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-hydroxymethyl-pyridine] tetrakis(acetate)-Tb3+ (BHTA-Tb3+), accompanied by a 49-fold increase in luminescence quantum yield with a long luminescence lifetime (2.76 ms). The luminescence response of the probe to hydroxyl radical is highly selective and insensitive to pH in the physiological pH range. For loading the probe into the living cells, the acetoxymethyl ester of BMPTA-Tb3+ was synthesized and used for the HeLa cell loading. Based on this probe, a background-free time-resolved luminescence imaging method for detecting hydroxyl radical in living cells was successfully established.  相似文献   

7.
Herein, we demonstrate the use of modified gold-coated magnetic nanoparticles as 'dispersible electrodes' which act as selective capture vehicles for electrochemical detection of prostate-specific antigen (PSA). A key advantage of this system is the ability to quantify non-electrochemical active analytes such as proteins with unprecedented detection limits and fast response times.  相似文献   

8.
Prostate-specific antigen (PSA) is a serum glycoprotein overproduced by the prostate in prostate cancer (≥4 ng/mL in the bloodstream). An immunoassay for total PSA (tPSA) was developed using the ALYGNSA method to enhance capture antibody orientation and a limit of detection of 0.63 ng/mL was reported, a limit 15-fold lower than a commercial tPSA ELISA assay. This ALYGNSA assay, however, was performed using only buffer-based proteins and blocking agents (Mackness et al., Anal Bioanal Chem 396:681–686, 2010). To improve the clinical application of this system, a serum-based tPSA ALYGNSA was developed employing human serum. This assay also resulted in a limit of detection of 0.63 ng/mL of tPSA protein. The findings reported here provide support for the clinical application of this assay for diagnosis, progression, treatment, and possible recurrence of prostate cancer.  相似文献   

9.
Complementary metal oxide semiconductor (CMOS)-based image sensors have received increased attention owing to the possibility of incorporating them into portable diagnostic devices. The present research examined the efficiency and sensitivity of a CMOS image sensor for the detection of antigen–antibody interactions involving interferon gamma protein without the aid of expensive instruments. The highest detection sensitivity of about 1 fg/ml primary antibody was achieved simply by a transmission mechanism. When photons are prevented from hitting the sensor surface, a reduction in digital output occurs in which the number of photons hitting the sensor surface is approximately proportional to the digital number. Nanoscale variation in substrate thickness after protein binding can be detected with high sensitivity by the CMOS image sensor. Therefore, this technique can be easily applied to smartphones or any clinical diagnostic devices for the detection of several biological entities, with high impact on the development of point-of-care applications.  相似文献   

10.
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. In this study, we report an integrated microfluidic chip designed for the immunodetection of prostate-specific antigens (PSAs). The microfluidic chip is based on the three-dimensional structure of quartz capillaries. The outlet channel extends to 1.8 cm, effectively facilitating the generation of uniform droplets ranging in size from 3 to 50 μm. Furthermore, we successfully immobilized the captured antibodies onto the surface of magnetic beads using an activator, and we constructed an immunosandwich complex by employing biotinylated antibodies. A key feature of this microfluidic chip is its integration of microfluidic droplet technology advantages, such as high-throughput parallelism, enzymatic signal amplification, and small droplet size. This integration results in an exceptionally sensitive PSA detection capability, with the detection limit reduced to 7.00 ± 0.62 pg/mL.  相似文献   

11.
Zhang LY  Zheng HZ  Long YJ  Huang CZ  Hao JY  Zhou DB 《Talanta》2011,83(5):420-1720
CdTe quantum dots (QDs) were used as a highly selective probe for the detection of prion protein. Orange-emitting precipitates appeared within 30 s of the addition of recombination prion protein (rPrP) to a solution of green-emitting CdTe QDs. This allowed colorimetric qualitative and semi-quantitative detection of rPrP. The decrease in fluorescence intensity of the supernatant could be used for quantitative detection of rPrP. The fluorescence intensity of the supernatant was inversely proportional to the rPrP concentration from 8 to 200 nmol L−1 (R2 = 0.9897). Transmission electron microscopy results showed that fibrils existed in the precipitates and these were partly transformed to amyloid plaques after the addition of rPrP.  相似文献   

12.
Membrane-based dot immunoassays are now widely used in almost every branch of biology and medicine. However, the quality of the immobilized antigen or antibody spots on the membranes was found to be highly operator-dependent and spotting by conventional methods often leads to heterogeneous spot morphologies and deposition inconsistencies. To circumvent these problems, a spotting method has been developed which is based on focussed absorption of an applied antibody solution through an aqueous network of capillary channels formed between the membrane and a wetted absorbent body. The method does not require any equipment for creating vacuum and according to assay requirements highly homogeneous spots of uniform size, in the range of 0.8- to 9-mm diameter, can be obtained by varying the volume of the applied antibody solution. Spot intensities were sufficiently high even at high antibody dilutions. Immobilization of anti-ochratoxin A (anti-OA) antibody by this method gave 2-fold increased sensitivity in a competitive assay of the toxin compared to conventional spotting methods. The calculated CV of the colour intensity for spots of different sizes (0.8 to 9 mm) was between 4.5 and 1%. Application of this spotting technique has been demonstrated for detection of OA in wine and coffee samples with the elimination of matrix interferences in the same immunoassay system. This was achieved by selective removal of nonspecific interfering substances from the sample extract during the assay. The detection limit of OA in wine (1 μg L−1) and coffee (2.5 μg kg−1) obtained by the present new method is superior to values reported recently. Thus, the present new method will be highly useful for improved performance of membrane-based immunoassays in almost every branch of biology and medicine.   相似文献   

13.
Ji  Jinfeng  Song  Guangliang  Cai  Xiao  Hu  Jinyang  Feng  Liang  Zhu  Hongjun 《Research on Chemical Intermediates》2016,42(6):5597-5605
Research on Chemical Intermediates - A spirooxazine derivative 1,3-dihydro-1,3,3-trimethyl-spiro[2-H-indole-2-2′-[2H-1,4] oxazino [2,3-f] [1, 10] phenanthroline] (compound 1) was explored as...  相似文献   

14.
Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA) technology is an energy-transfer-based assay, utilizing singlet oxygen as an energy donor to a fluorescent acceptor. The long singlet oxygen migration distance allows the energy transfer mechanism to go up to ~200 nm, facilitating flexible and sensitive homogeneous immunoassays. While soluble protein detection using AlphaLISA was previously described, the detection of particles such as bacteria and viruses was not reported. In this work, we show for the first time the implementation of the AlphaLISA technology for the detection of a particulate antigen, i.e., Bacillus anthracis spores. Here, we show that an efficient particle immunoassay requires a high acceptor-to-donor ratio (>4:1). The results suggested that the high acceptor/donor ratio is required to avoid donor aggregation (“islands”) on the spore surface, hence facilitating donor/acceptor interaction. The developed assay enabled the detection of 106 spores/mL spiked in PBS. We also demonstrate the development of a highly sensitive AlphaLISA assay for the detection of the main toxin component of anthrax, protective antigen (PA). The assay enabled the detection of 10 and 100 pg/mL PA in buffer and spiked naïve rabbit sera, respectively, and was successfully implemented in sera of anthrax-infected rabbits. To summarize, this study demonstrates that AlphaLISA enables detection of anthrax spores and toxin, utilizing short homogeneous assays. Moreover, it is shown for the first time that this technology facilitates the detection of particulate entities and might be suitable for the detection of other bacteria or viruses.  相似文献   

15.
Magnetic beads have served as a conventional bioassay platform in biotechnology. In this study, a fully automated immunoassay was performed using novel nano- and microbead-composites constructed by assembling nano-magnetic beads onto polystyrene microbeads, designated ‘Beads on Beads’. Nano-sized bacterial magnetic particles (BacMPs) displaying the immunoglobulin G (IgG)-binding domain of protein A (ZZ domain) were used for the construction of ‘Beads on Beads’ via the interaction of biotin-streptavidin. The efficient assembly of ‘Beads on Beads’ was performed by gradual addition of biotin-labeled BacMPs onto streptavidin-coated polystyrene microbeads. Approximately 2000 BacMPs were uniformly assembled on a single microbead without aggregation. The constructed ‘Beads on Beads’ were magnetized and separated from the suspension by using an automated magnetic separation system with a higher efficiency than BacMPs alone. Furthermore, fully automated detection of prostate-specific antigens was performed with the detection limit of 1.48 ng mL−1. From this preliminary assay, it can be seen that ‘Beads on Beads’ could be a powerful tool in the development of high-throughput, fully automated multiplexed bioassays.  相似文献   

16.
A new synthetic strategy for DNA-enzyme conjugates with a novel architecture was explored using a natural cross-linking catalyst, microbial transglutaminase (MTG). A glutamine-donor substrate peptide of MTG was introduced at the 5-position on the pyrimidine of deoxyuridine triphosphate to prepare a DNA strand with multiple glutamine-donor sites by polymerase chain reaction (PCR). A substrate peptide that contained an MTG-reactive lysine residue was fused to the N terminus of a thermostable alkaline phoshatase from Pyrococcus furiosus (PfuAP) by genetic engineering. By combining enzymatically the substrate moieties of MTG introduced to the DNA template and the recombinant enzyme, a DNA-(enzyme)(n) conjugate with 1:n stoichiometry was successfully obtained. The enzyme/DNA ratio of the conjugate increased as the benzyloxycarbonyl-L-glutaminylglycine (Z-QG) moiety increased in the DNA template. The potential utility of the new conjugate decorated with signaling enzymes was validated in a dot blot hybridization assay. The DNA-(enzyme)(n) probe could clearly detect 10(4) copies of the target nucleic acid with the complementary sequence under harsh hybridization conditions, thereby enabling a simple detection procedure without cumbersome bound/free processes associated with a conventional hapten-antibody reaction-based DNA-detection system.  相似文献   

17.
《Electrophoresis》2018,39(7):957-964
Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point‐of‐care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean‐room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample‐reagent mixing. With the integration of smartphone‐based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone‐based detection platform is portable for on‐site quantitative detection.  相似文献   

18.
Lu F  Wang KH  Lin Y 《The Analyst》2005,130(11):1513-1517
A novel, sensitive immunochromatographic electrochemical biosensor (IEB) which combines an immunochromatographic strip technique with an electrochemical detection technique has been demonstrated. The IEB takes advantages of the speed and low-cost of the conventional immunochromatographic test kits and high-sensitivity of stripping voltammetry. Bismuth ions (Bi(3+)) have been coupled with the antibody through the bifunctional chelating agent diethylenetriamine pentaacetic acid (DTPA). After immunoreactions, Bi(3+) was released and quantified by anodic stripping voltammetry at a built-in single-use screen-printed electrode. As an example for the applications of such novel device, the detection of human chorionic gonadotronphin (HCG) in a specimen was performed. This biosensor provides a more user-friendly, rapid, clinically accurate, less expensive immunoassay for such analysis in specimens than currently available test kits.  相似文献   

19.
We demonstrate detection, in the gas-phase, of O(1D2) at concentrations down to 10(7) cm(-3) and develop this new method for time-resolved kinetic studies allowing both the total removal rate of O(1D2), of up to 1.5 x 10(6) s(-1), and the fraction quenched to O(3P(J)) by species X, k(q)/k(X), to be determined precisely from a single time profile: at 295 K we find, k(O(1D2) + N2O) = (1.43 +/- 0.08) x 10(-10) cm3 s(-1) with k(q)/k(N2O) = 0.056 +/- 0.009; k(O(1D2) + C2H2) = (3.1 +/- 0.2) x 10(-10) cm3 s(-1) with k(q)/k(C2H2) = 0.020 +/- 0.010; k(q)/k(H2O) < 0.003 for O(1D2) + H2O.  相似文献   

20.
Conclusion This method is more rapid than radial immunodiffusion (a few hours compared with a few days), is much more sensitive and has a much lower detection limit. Proteins in concentrations as low as 0.05 g/ml can be determined. ZI also has some major advantages over rocket immunoelectrophoresis: 1.Simpler equipment and working procedures — no sample wells and no electrode wicks. 2. Less consumption of antibodies, agarose and buffer substances per sample; 3.The total time needed to obtain a final result is shorter than that of conventional rocket immunoelectrophoresis; 4. Much lower detection limit (about 1/20 to 1/100); 5. Simpler evaluation because of much larger concentration range with a linear calibration curve which means less rerunning of samples and no area measurements or calculations. The small need of antibodies (about 0.3 l of antiserum per sample) with ZI is not only economically attractive (especially for expensive highly specific antibodies) but it may also be of the utmost importance when the total available amount is limited.Summarizing, zone immunoelectrophoresis appears very promising and advantageous for quantitative determination of proteins and some other antigens.
Neues empfindliches Verfahren zur quantitativen Bestimmung von Proteinen durch Zonen-Immunoelektrophorese
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号