首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of DMAP-stabilized (DMAP=4-dimethylaminopyridine) N-silylphosphoranimine cations [DMAPPR(2)==NSiMe(3)](+), bearing R=Cl ([8](+)), Me ([10 a](+)), Me/Ph ([10 b](+)), Ph ([10 c](+)), and OCH(2)CF(3) ([10 d](+)) substituents, have been synthesized from the reactions of the parent phosphoranimines Cl(3)P==NSiMe(3) (3) and XR(2)P==NSiMe(3) (X=Cl (9), Br (11); R=Me (9 a and 11 a), Me/Ph (9 b and 11 b), Ph (9 c and 11 c), and OCH(2)CF(3) (9 d and 11 d)) with DMAP and silver salts as halide abstractors. Reactions in the absence of silver salts yield the corresponding cations, with halide counterions. The stability of the salts is highly dependent on the phosphoranimine substituent and the nature of the counteranion, such that electron-withdrawing substituents and non-coordinating anions yield the most stable salts. X-ray structural determination of the cations reveal extremely short phosphoranimine P--N bond lengths for the cations [8](+) and [10 d](+) (1.47-1.49 A) in which electron-withdrawing substituents are present and a longer phosphoranimine P--N length for the cation [10 a](+) (1.53 A) in which electron-donating substituents are present. Very wide bond angles at nitrogen are observed for the salts containing the cation [10 d](+) (158-166 degrees ) and indicate significant sp hybridization at the nitrogen centre.  相似文献   

2.
Zhou M  Qiao X  Tong H  Gong T  Fan M  Yang Q  Dong Q  Chao J  Guo Z  Liu D 《Inorganic chemistry》2012,51(9):4925-4930
Addition reactions of lithium bis(trimethylsilyl)amide with dimethylcyanamide lead to novel lithium salts of 6-((trimethylsilyl)amido)-2,4-bis(dimethylamino)[1,3,5]triazines [LLi(D)](2) (L = NC(NMe(2))NC(NMe(2))NC(NSiMe(3)); D = Me(2)NCN (1), Et(2)O (2)) and to the Mn and Co complexes [LL'M] (L' = N{N(SiMe(3))C(NMe(2))}(2); M = Mn (3), Co (4)); the structures of crystalline 1, 3, and 4 are reported. Their formation involves trimethylsilyl shifts, ring formation, and unusual Me(2)NSiMe(3) elimination.  相似文献   

3.
Mixed amidinato amido complexes [Me3SiNC(tBu)NSiMe3]M[N(SiMe3)2] (M = Sn 2, Ge 3) were prepared by the reaction of [Me3SiNC(tBu)NSiMe3]Li (1a) with SnCl2 and GeCl2(dioxane) in ether. The N(SiMe3)2 ligand in these compounds is derived from the rearrangement of the [Me3SiNC(tBu)NSiMe3]- anion with extrusion of tBuCN. The susceptibility of [Me3SiNC(tBu)NSiMe3]- to rearrangement appears to be dependent on reaction solvent and on the coordinated metal center. Single-crystal X-ray diffraction studies of 2 and 3 are presented. Replacement of Me for tBu in the ligand allowed [Me3SiNC(Me)NSiMe3]2SnII (4) to be isolated, and an X-ray structure of this compound is reported. The isolation of 4 indicates that steric factors also play a role in the stability of [Me3SiNC(tBu)NSiMe3]-. Compounds 2 and 3 are outstanding catalysts for the cyclotrimerization of phenyl isocyanates to perhydro-1,3,5-triazine-2,4,6-triones (isocyanurates) at room temperature. In contrast, complex 4 catalytically reacts with phenyl isocyanate to produce isocyanate dimer and trimer in a 52:35 ratio.  相似文献   

4.
Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R'P═NSiMe(3) [R' = R' = Me (2a); R' = Me, R' = Ph (2b); R' = R' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R'O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)). A mechanism is proposed for the unexpected formation of [4](+) in which the formation of the donor-stabilized adduct [3](+) occurs as the first step.  相似文献   

5.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

6.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

7.
The reaction of N-(trimethylsilyl)phosphoranimine Cl3P=NSiMe3 (1) with nBu3P or Ph3P yields the N-(dichlorophosphino)phosphoranimines nBu3P=NPCl2 (4a) or Ph3P=NPCl2 (4b), respectively. Detailed studies of this reaction indicate a mechanism that involves the reductive dechlorination of 1 by the tertiary phosphine to yield nBu3PCl2 (5a) or Ph3PCl2 (5b) with the apparent formation of the transient chlorophosphinimine ClP=NSiMe3 (6), followed by condensation of 5a or 5b with 1 to form 4a or 4b and Me3SiCl. Convincing evidence for the proposed mechanism was revealed by studies of the analogous reaction between the N-(triphenylsilyl)phosphoranimine Cl3P=NSiPh3 (8) with nBu3P and Ph3P. These reactions quantitatively generated 5a and 5b and also allowed the correspondingly more stable chlorophosphinimine ClP=NSiPh3 (10) to be identified.  相似文献   

8.
The reactions of N≡Mo(OR)(3) (R = (t)Bu, (i)Pr) with (Me(3)Si)(2)NPNSiMe(3) (1), (Me(3)Si)(2)NPN(t)Bu (2), (Me(3)Si)(2)NPS(N(t)Bu) (3) and (Me(3)Si)(2)NP(NSiMe(3))(2) (4) have been studied. Reported complexes were synthesized via 1,2-addition of an Mo-OR bond across the P=N bond, resulting in four-membered metallacycles of the corresponding σ(2)λ(3)-iminophosphine or σ(3)λ(5)-iminophosphorane with trialkoxynitridomolybdenum. The structure of all new compounds was elucidated by (1)H, (13)C and (31)P NMR spectroscopy. Compounds [(Me(3)Si)(2)N-P(NSiMe(3))(O-(t)Bu)]{((t)BuO)(2)Mo≡N} (5), [(Me(3)Si)(2)N-PS(N(t)Bu)(O-(t)Bu)]{((t)BuO)(2)Mo≡N} (7), [(Me(3)Si)(2)N-P(NSiMe(3))(2)(O-(t)Bu)]{((t)BuO)(2)Mo≡N} (8) and [(Me(3)Si)(2)N-P(NSiMe(3))(2)(O-(i)Pr)]{((i)PrO)(2)Mo≡N} (12) were also characterized by single X-ray analysis and shown to be metallacycles containing the Mo atom with an intact terminal nitrido ligand.  相似文献   

9.
A series of donor-stabilized N-silylphosphoranimine salts [DMAP.PCl2=NSiMe3]+X- (DMAP = 4-(dimethylamino)pyridine) were prepared by the reaction of Cl3P=NSiMe3 with DMAP in the presence of silver salts AgX (X = OSO2CF3, BF4, and SbF6). Repeating the reaction in the absence of AgX gave the chloride salt [DMAP.PCl2=NSiMe3]Cl which has been shown to be in equilibrium with free DMAP and Cl3P=NSiMe3. Attempts to stabilize a N-silylphosphoranimine cation with phosphine donors led to unexpected imine transfer chemistry. For example, Cl3P=NSiMe3 reacts with phosphines, R3P (R = nBu and Ph), to produce the metathesis products PCl3 and R3P=NSiMe3 which subsequently react together to afford the N-phosphinophosphoranimines R3P=N-PCl2 and ClSiMe3 as a byproduct.  相似文献   

10.
The treatment of Me3SiN=P(NHBut)3 with three equivalents of LiBun in toluene produces (Li3(P(NBut)3(NSiMe3)))2 comprised of a Li6N6 cyclic ladder capped on the two hexagonal faces by mu 3-PNSiMe3 groups; the corresponding reaction of O=P(NHBut)3 yields the face-sharing double-cubane (Li2(THF)P(O)(NBut)2(NHBut))2 with a central Li2O2 ring.  相似文献   

11.
Wang ZX  Li YX 《Inorganic chemistry》2002,41(23):5934-5936
Reaction of MCl4 (M = Zr, Hf) with 2 equiv of 2-iminophosphorano-1-phosphaallyl lithium [Li[P(Ph)C(=CHPh)P(Me)2=NSiMe3](THF)1.5] (1) affords ligand coupling complexes 3 and 4, respectively, while similar treatment of ZrCl4 with [Li[P(Ph)C(=C(SiMe2Bu(t))Ph)P(Me)2=NSiMe3](THF)2] (2) yields ligand transfer complex 5.  相似文献   

12.
The reaction of TaCl5 with a single equivalent of Cl3P=NSiMe3 resulted in the isolation of the perhalogenated (phosphoraniminato) tantalum(V) complex TaCl4(N=PCl3) (1). Reaction of 1 with an excess of THF and subsequent cooling produced crystals of TaCl4(N=PCl3)(THF) (1.THF), which possesses a distorted octahedral Ta center with a THF molecule coordinated trans to the phosphoraniminato ligand. The reaction of 1 with the aminophosphoranimine, (Me3Si)2NPCl2=NSiMe3, resulted in a [3 + 1] cyclocondensation reaction to form the metallacyclic complex, TaCl3(N=PCl3)[N(SiMe3)PCl2N(SiMe3)] (2), which contains a TaNPN four-membered ring and a phosphoraniminato ligand (N=PCl3). The analogous [3 + 1] cyclocondensation reaction between (Me3Si)2NPCl2=NSiMe3 and TaCl5 led to the isolation of TaCl4[N(SiMe3)PCl2N(SiMe3)] (3). An attempt to cleave the NPN ligand from the Ta center in 2 via protonolysis with HCl led to an unusual phosphoraniminato ligand coupling reaction to yield the novel phosphazenium salt [N(PCl2NH2)2][TaCl6] (4). All new compounds (1.THF and complexes 1-4) were characterized by single-crystal X-ray diffraction.  相似文献   

13.
The low-coordinate phosphorus compounds (Me(3)Si)(2)N-P=NSiMe(3), (Me(3)Si)(2)N-P(=S)=N(t)Bu and (Me(3)Si)(2)N-P(=NSiMe(3))(2) react with ((i)PrO)(3)M≡M(O(i)Pr)(3) (M = Mo, W) to form four- and five-membered metallacycles with intact endocyclic or exocyclic M≡M triple bonds. The first four-membered planar metallacycles, containing an M≡M triple bond were obtained in reaction with (Me(3)Si)(2)N-P=NSiMe(3).  相似文献   

14.
The reaction of bisgermavinylidene [(Me3SiN=PPh2)2C=Ge-->Ge=C(PPh2=NSiMe3)2] (1) with M(CO)5(THF) ( M = Cr, W, Mo) afforded the metallagermacyclopropane [(Me-3SiN=PPh2)2CGeM(CO)3[M(CO)5]] [M = W (2), Cr (3), Mo (4)]; in one of the reactions, compound 4 reacts further to give a "pincer" carbene complex [(CO)3Mo[C(Ph2P=NSi Me3)2]] (5); the X-ray structures of compounds 2 and 5 have been determined.  相似文献   

15.
The reaction of R'NHLi (R = (t)Bu, (t)Oct) with Ph(2)P(NSiMe(3))(2)Te(Cl)NPPh(2)NSiMe(3) in toluene at -78 degrees C, followed by warming to 23 degrees C, produces the tellurium diimide dimers RNTe(&mgr;-NR')(2)TeNR (2a, R' = (t)Bu, R = NPPh(2)NSiMe(3); 2b, R' = (t)Oct, R = NPPh(2)NSiMe(3)) and Ph(2)P(NHSiMe(3))(NSiMe(3)). X-ray analyses revealed that 2a and 2b have centrosymmetric structures containing a planar four-membered Te(2)N(2) ring and short exocyclic tellurium-nitrogen bond lengths (d(Te-N) = 1.900(5) and 1.897(4) or 1.905(4) ? for 2a and 2b, respectively). The exocyclic imido substituents adopt a trans arrangement with respect to the Te(2)N(2) ring. By contrast, the reaction of 2,4,6-(t)Bu(3)C(6)H(2)NHLi with Ph(2)P(NSiMe(3))(2)Te(Cl)NPPh(2)NSiMe(3) in toluene under similar conditions produces the telluradiazole ((t)Bu(2)C(6)H(2)N(2)Te)(2) (3), which exists as a weakly associated dimer in the solid state with intramolecular Te-N distances of 2.628(4) ?. The tellurium diimide dimer (t)BuNTe(&mgr;-N(t)Bu)(2)TeN(t)Bu (2c'), prepared by the reaction of TeCl(4) with (t)BuNHLi in a 1:4 molar ratio, consists of a folded Te(2)N(2) ring with exocyclic N(t)Bu groups in a cis orientation. The (1)H, (31)P, and (125)Te NMR spectra of 2a and 2b indicate that the trans isomers slowly transform into the corresponding cis isomers in solution. Crystals of 2b are triclinic, space group P&onemacr; (No. 2), with a = 13.304(3) ?, b = 16.927(3) ?, c = 13.292(5) ?, alpha = 98.94(2), beta = 109.27(2), gamma = 69.04(2) degrees, V = 2636(1) ?(3), and Z = 4. The final R and R(w) values were 0.034 and 0.033, respectively. Crystals of 2c' are orthorhombic, space group Pnma (No. 62), with a = 9.535(3) ?, b = 14.264(3) ?, c = 16.963(4) ?, V = 2307.1(9) ?(3), and Z = 4. The final R and R(w) values were 0.040 and 0.040, respectively. Crystals of 3 are monoclinic, space group P2(1)/n (No. 14), with a = 9.117(3) ?, b = 11.481(4) ?, c = 16.550(4) ?, beta = 97.76(2) degrees, V = 1716.5(8) ?(3), and Z = 4. The final R and R(w) values were 0.031 and 0.034, respectively.  相似文献   

16.
Leung WP  So CW  Kan KW  Chan HS  Mak TC 《Inorganic chemistry》2005,44(21):7286-7288
The reaction of bis(germavinylidene) [(Me3SiN=PPh2)2C=Ge-->Ge=C(PPh2=NSiMe3)2] (1) with CpMn(CO)2(THF) (Cp = eta5-C5H5) in THF afforded [(Me3SiN=PPh2)2C=Ge-->Mn(CO)2Cp] (2). Similar reaction of 1 with (cod)RhCl (cod = 1,5-cyclooctadiene) in THF gave [(Me3SiN=NPPh2)2{(cod)Rh}C-GeCl] (3). The results suggested that reactive germavinylidene may exist in solution. The X-ray structures of 2 and 3 have been determined.  相似文献   

17.
Di(tert-butyl)sulfur diimide and bis(trimethylsilyl)sulfur diimide were reacted with different metalated amines to form versatile novel multidentate ligand systems with side-arm donation. Their complexation properties in terms of ligand design, denticity and the cation size are discussed. We report herein the synthesis and structure elucidation of [(tBuN)(2)S{LiMe(2)N(C(6)H(4))S(NtBu)(2)}(2)] (1), [(Li{Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (2), [(Li(thf){Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (3), [(Li{2-PicS(NSiMe(3))(2)})(2)] (4), [(Li{Me(2)N(CH(2))(2)N(Me)S(NSiMe(3))(2)})(2)] (5), [(Na{Me(2)N(CH(2))(2)N(Me)S(NSiMe(3))(2)})(2)] (6) and [(K{Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (7).  相似文献   

18.
In the OSF(4)/Me(2)NSiMe(3) system besides the long known Me(2)NS(O)F(3) only the trisubstituted derivative is isolated as (Me(2)N)(3)SO(+)Me(3)SiF(2)(-) (3). Similar to (Me(2)N)(3)S(+)Me(3)SiF(2)(-) compound 3 is an excellent fluoride ion donor. With AsF(5) and HF the corresponding hexafluoroarsenate (Me(2)N)(3)SO(+)AsF(6)(-) (4) and the hydrogen bifluoride (Me(2)N)(3)SO(+)HF(2)(-) (5) are formed in almost quantitative yield. X-ray structure determinations of 3-5 surprisingly showed two different types of structures for the cation. In 3 and 5 this cation has C(3) symmetry, while in the hexafluoroarsenate 4 a (Me(2)N)(3)S(+)-like structure with C(s)() symmetry is determined. The experimental results for (Me(2)N)(3)SO(+) and (Me(2)N)(3)S(+) are compared with theoretical calculations for these cations and their isoelectronic neutral counterparts, the phosphorus amides (Me(2)N)(3)PO and (Me(2)N)(3)P, respectively.  相似文献   

19.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

20.
The photolysis of [P(2)N(2)]TaMe(3) ([P(2)N(2)] = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh) produces [P(2)N(2)]Ta=CH(2)(Me) as the major product. The thermally unstable methylidene complex decomposes in solution in the absence of trapping agents to unidentified products. However, in the presence of ethylene [P(2)N(2)]Ta=CH(2)(Me) is slowly converted to [P(2)N(2)]Ta(C(2)H(4))Et, with [P(2)N(2)]Ta(C(2)H(4))Me observed as a minor product. A mechanistic study suggests that the formation of [P(2)N(2)]Ta(C(2)H(4))Et results from the trapping of [P(2)N(2)]TaEt, formed by the migratory insertion of the methylene moiety into the tantalum-methyl bond. The minor product, [P(2)N(2)]Ta(C(2)H(4))Me, forms from the decomposition of a tantalacyclobutane resulting from the addition of ethylene to [P(2)N(2)]Ta=CH(2)(Me) and is accompanied by the production of an equivalent of propylene. Pure [P(2)N(2)]Ta(C(2)H(4))Et can be synthesized by hydrogenation of [P(2)N(2)]TaMe(3) in the presence of PMe(3), followed by the reaction of ethylene with the resulting trihydride. Crystallographic and NMR data indicate the presence of a beta-agostic interaction between the ethyl group and tantalum center in [P(2)N(2)]Ta(C(2)H(4))Et. Partially deuterated analogues of [P(2)N(2)]Ta(C(2)H(4))Et show a large isotopic perturbation of resonance for both the beta-protons and the alpha-protons of the ethyl group, indicative of an equilibrium between a beta-agostic and an alpha-agostic interaction for the ethyl group in solution. An EXSY spectrum demonstrates that an additional fluxional process occurs that exchanges all of the (1)H environments of the ethyl and ethylene ligands. The mechanism of this exchange is believed to involve the direct transfer of the beta-agostic hydrogen atom from the ethyl group to the ethylene ligand, via the so-called beta-hydrogen transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号