首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the maser generation of millisecond spikes of the solar radio emission at the cyclotron resonance of a fast extraordinary wave in an inhomogeneous medium. It is shown that the magnetic-field inhomogeneity with parameters typical of the solar corona drastically reduces the time of electromagnetic-wave amplification, which is explained by the fact that these waves leave the resonance region in the wave-vector space. As a result, an unstable electron distribution can be formed. The efficient generation of radiation becomes possible only in such local regions where the influence of the magnetic-field inhomogeneity is compensated by small-scale inhomogeneities of the plasma density with typical scales ranging from tens to hundreds of kilometers. Taking the effect of inhomogeneous medium into account allows us to explain spatial and temporal characteristics of the spikes.  相似文献   

2.
We study the effect of striction plasma density disturbances on the generation intensity of longitudional cold and plasma oscillations due to polarization of the magnetic field-aligned ionospheric plasma irregularities with δNo<0 by a powerful radio wave. It is assumed that the plasma density level inside the irregularity intersects the upper-hybrid resonance level, in the vicinity of which the cold oscillations excited directly by a powerful radio wave are transformed to shorter-wave plasma oscillations. We consider the short plasma wave limit to reduce the problem to a system of two coupled equations for the cold wave induction and plasma wave electric field. The first equation is supplemented by a local source equal to the integral of the plasma wave electric field in the resonance region. The second equation involves the cold wave induction at the resonance point and describes the electric field of interacting waves in the resonance vicinity. We use simplifications connected with the small absorption of plasma waves propagating inside the irregularity and weak radiation of these waves outside the irregularity. These conditions correspond to the generation of eigenmodes of plasma oscillations trapped in the irregularity. We have obtained a resonance-type nonlinear equation for the electric field intensity (or energy flux) of eigenmode plasma waves with allowance for striction disturbances of the plasma density profile in the resonance region. It is shown that the striction expulsion of plasma is responsible for the occurrence of coefficients describing the change in the intensity of excitation and radiation of plasma waves at the irregularity boundary. Such an expulsion leads to variations of the efficient generation band of plasma eigenmodes with the total phase increment of the wave in the irregularity. It also leads to a change in the phase shift of the plasma wave reflected from the resonance. These coefficients and the nonlinear phase shift are expressed in terms of real wave functions of the nonlinear Airy equation which describes the electric field of the excited waves in the resonance vicinity when the dissipation is absent. Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow region, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 3, pp. 270–297, March, 1998.  相似文献   

3.
It is well established now that the solar atmosphere, from photosphere to the corona and the solar wind is a highly structured medium. Satellite observations have confirmed the presence of steady flows. Here, we investigate the parallel propagation of magnetohydrodynamic (MHD) surface waves travelling along an ideal incompressible flowing plasma slab surrounded by flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation properties of the waves are studied in a reference frame moving with the mass flow outside the slab. In general, flows change the waves’ phase velocities compared to their magnitudes in a static MHD plasma slab and the Hall effect limits the range of waves’ propagation. On the other hand, when the relative Alfvénic Mach number is negative, the flow extends the waves propagation range beyond that limit (owing to the Hall effect) and can cause the triggering of the Kelvin-Helmholtz instability whose onset begins at specific critical wave numbers. It turns out that the interval of Alfvénic Mach numbers for which the surface modes are unstable critically depends on the ratio between mass densities outside and inside the flux tube.  相似文献   

4.
Although it has been long that spacecraft observed the anisotropy of velocity protons in the solar wind, there is still not a reasonable explanation. In this paper we try to give an explanation from the diffusion plateau of protoncyclotron resonance predicted by the quasi-linear theory for the resonance between the protons and the parallel propagating waves. We consider the effect of dispersion relation on diffusion plateau and notice that the diffusion plateau we have got by using cold plasma dispersion relation accords with the density contours in the velocity phase space detected at 0.3 AU in fast solar wind. For explaining proton distributions obtained in the fast solar wind from 0.7 AU to 1 AU hot plasma dispersion relation should be considered. We also give a theoretical relation of proton thermal anisotropy A and plasma parameter β.  相似文献   

5.
We propose a new mechanism of solar flaring, which is based on explosive phenomena in magnetic traps in the presence of a two-component plasma composed of fast electrons with anisotropic velocity distribution and a dense cold background plasma with high ionization. It is assumed that such a plasma is generated in a coronal magnetic trap in a preflare stage. This system, which is essentially a cyclotron resonance maser, becomes unstable under certain conditions and gives rise to an explosive cyclotron instability, which develops at first in a very small local area and is accompanied by intense heating of the background plasma and release of fast electrons at the trap ends. The energy of fast particles is collected from the entire volume of the magnetic trap and is localized in the form of heat in the explosion area from which thermal and shock waves are propagated. The model makes it possible to explain the main solar flare effects.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 6, pp. 699–712, June, 1996.  相似文献   

6.
Absorption of Alfvén waves is considered to be the main mechanism of heating in the solar corona. It is concluded that the sharp increase of the plasma temperature by two orders of magnitude is related to a self-induced opacity with respect to Alfvén waves. The maximal frequency for propagation of Alfvén waves is determined by the strongly temperature dependent kinematic viscosity. In such a way the temperature jump is due to absorption of high frequency Alfvén waves in a narrow layer above the solar surface. It is calculated the power per unit area dissipated in this layer due to damping of Alfvén waves that blows up the plasma and gives birth to the solar wind. A model short wave-length (WKB) evaluation takes into account the 1/f2 frequency dependence of the transversal magnetic field and velocity spectral densities. Such spectral densities agree with old magnetometric data taken by Voyager 1 and recent theoretical calculations in the framework of Langevin-Burgers MHD. The presented theory predicts existence of intensive high frequency MHD Alfvén waves in the cold layer beneath the corona. It is briefly discussed how this statement can be checked experimentally. It is demonstrated that the magnitude of the Alfvén waves generating random noise and the solar wind velocity can be expressed only in terms of satellite experimental data. It is advocated that investigation of properties of the solar surface as a random driver by optical methods is an important task for future solar physics.  相似文献   

7.
Generation of electromagnetic waves by an annular shell of plasma rotating in crossed radial electrostatic and axial magnetic fields in a cylindrical resonator is investigated theoretically. Dispersion relations are obtained describing the interaction of the waves with the plasma. It is shown that generation of waves by a narrow plasma shell is possible due to a cyclotron resonance, Čerenkov resonance, or plasma resonance. Here we consider a Čerenkov resonance, where the velocities of the plasma components and the phase velocities of the waves are perpendicular to the constant magnetic field. The frequencies and growth rates of the waves are found under conditions of the above-mentioned resonances in a uniform and in a nonuniform plasma shell. Advantages and disadvantages of wave generation under various conditions are noted. Zh. Tekh. Fiz. 69, 16–21 (February 1999)  相似文献   

8.
采用粒子模拟方法,考察多支沿背景磁场方向传播的低频Alfvén波对磁化等离子体的加热过程,研究不同频率的多支低频Alfvén波相干加热.结果表明可以通过调整波的频率比实现对非共振加热过程和随机加热过程这两个阶段的强化.符合相干共振条件的多波加热会强化低频Alfvén波对粒子拾取,进而强化非共振加热,明显提高加热效率.在多波加热的过程中,如果多支波之间的频率差足够小,则多波在调制过程中会形成波包.波包的出现标志着粒子各向异性的强化,从而提升随机加热效率.  相似文献   

9.
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wave number ranges in a Beta > or approximately = 1 plasma. The k(-5/3) inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfvén speed. At smaller wavelengths krho(i) > or = 1 the electric spectrum is enhanced and is consistent with the expected dispersion relation of short-wavelength kinetic Alfvén waves. Kinetic Alfvén waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluidlike nature of the solar wind.  相似文献   

10.
In the solar corona waves and oscillatory activities are observed with modern imaging and spectral instruments. These oscillations are interpreted as slow magneto-acoustic waves excited impulsively in coronal loops. This study explores the effect of steady plasma flow on the dissipation of slow magneto-acoustic waves in the solar coronal loops permeated by uniform magnetic field. We have investigated the damping of slow waves in the coronal plasma taking into account viscosity and thermal conductivity as dissipative processes. On solving the dispersion relation it is found that the presence of plasma flow influences the characteristics of wave propagation and dissipation. We have shown that the time damping of slow waves exhibits varying behavior depending upon the physical parameters of the loop. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm−2 s−1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction below to the transition region.  相似文献   

11.
It has been shown experimentally that the diamagnetic effect appearing when electrons of a magnetized plasma in the antenna near field are accelerated under electron cyclotron resonance conditions can be used to generate low-frequency waves. The amplitude modulation of a signal supplied to the antenna is accompanied by the modulation of the diamagnetic effect and leads to the emission of waves at the modulation frequency to the surrounding plasma. In this process, the extended plasma region containing accelerated electrons serves as a parametric bodiless antenna. The results of the model laboratory experiments make it possible to propose a method for the parametric generation of low-frequency whistler waves in the Earth’s ionosphere by a powerful amplitude-modulated signal supplied to the satellite-borne antenna.  相似文献   

12.
Large amplitude dust ion acoustic (DIA) solitons as well as double layers (DLs) are studied in a dusty plasma having a high-energy-tail electron distribution. The influence of electron deviation from the Maxwellian distribution and ion streaming on the existence domain of solitons is discussed in the (M, f) space using the pseudo-potential approach. It is found that in the presence of streaming ions and for a fixed f, solitons may appear for larger values of M. This means that in the presence of ion streaming, high values of the Mach number are needed to have soliton. The DIA solitary waves profile is highly sensitive to the ion streaming speed. Their amplitude is found to decrease with an increase of the ion streaming speed. In addition, we find that the ion streaming effect may lead to the appearance of double layers. The results of this axticle should be useful in understanding the basic nonlinear features of DIA waves propagating in space dusty plasmas, especially those including a relative motion between species, such as comet tails and solar wind streams, etc.  相似文献   

13.
On the basis of many-year observations of the resonance structure of the spectrum (RSS) of the magnetic field in the frequency range 0.1 to 10 Hz over a 11-year solar cycle it has been concluded that resonance conditions for Alfvén waves inside the ionosphere (ionospheric Alfvén cavity IAC) are definitely controlled by the solar activity level. The RSS is observed segularly in the years of minimum solar activity and is practically absent in the years of maximum solar activity. This experimental fact is based on the analysis of observations carried out in the period of from 1985 to 1995. It is shown that allowance for the IAC permits a natural explanation of the dependence of the RSS on the solar activity. Radiophysical Research Institute, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 40, No. 10, pp. 1305–1319, October, 1997.  相似文献   

14.
In a plasma-beam system in a finite magnetic field, along with Cherenkov resonance other resonances of beam and plasma waves occur. In a finite-length plasma waveguide, the concurrent wave excited by a beam at Cherenkov resonance is always partially reflected from the ends of the plasma waveguide. The reflected (counterrunning) wave provides feedback and leads to the occurrence of generation regime in such a system. Under the resonance condition for a normal Doppler effect the feedback is suppressed and the generation may cease. This effect can be used in experiments on creation of plasma microwave amplifiers in which microwave generation is harmful.  相似文献   

15.
Basing on recent solar models, the excitation of ion‐acoustic turbulence in the weakly‐collisional, fully and partially‐ionized regions of the solar atmosphere is investigated. Within the frame of hydrodynamics, conditions are found under which the heating of the plasma by ion‐acoustic type waves is more effective than the Joule heating. Taking into account wave and Joule heating effects, a nonlinear differential equation is derived, which describes the evolution of nonlinear ion‐acoustic waves in the collisional plasma.  相似文献   

16.
We study theoretically the propagation of lower-hybrid resonance (LHR) waves in the auroral ionospheric plasma. The ray-tracing technique is used to study the properties of LHR wave propagation with account of a large-scale inhomogeneity both along and across the geomagnetic field. It is shown that wave refraction in such an inhomogeneous medium can result in direct transformation of LHR waves whose wave normals make large angles with the geomagnetic field into whistler-mode waves, whose wave vectors are close to the geomagnetic-field direction and which can therefore pass through the ionosphere to the ground. The parameters of LHR waves which can thus be transformed into whistler-mode waves are found. The transformation process considered can be important for interpreting ground-based observations of ELF waves. Deceased. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 4, pp. 279–289, April 2009.  相似文献   

17.
Summary The well-known anomalous absorption of transverse electromagnetic waves near the resonance point of a plasma surface is described as a phenomenon of radiative damping of waves. Reflections from a sharp plasma surface and from smoothly inhomogenous plasma are considered separately. It is shown that during the reflection ofE-waves from the surface of a smoothly bounded inhomogeneous plasma, radiative damping occurs in the reflecting point as a result of longitudinal plasma waves emission and it is also shown that anomalous absorption of electromagnetic waves in the long-wavelength limit is significant as well as in the short wavelength.  相似文献   

18.
It is shown that the asymmetry of a double quantum well structure considerably affects the dispersion relations for the optical and intersubband plasmons. A specific mechanism of the plasmon damping arises due to a resonance of the plasmon energy and that of single-particle intersubband transitions. If the population of the subbands is inverted, an amplification of the plasma waves becomes possible.  相似文献   

19.
Bifurcation analysis of dust acoustic (DA) periodic waves in three components, unmagnetized dusty plasma system is investigated using the generalized (r, q) distribution function for ions and electrons. Depending on the different parameters of the system considered, all possible phase portraits, including periodic, homoclinic, superperiodic, and superhomoclinic trajectories, are presented. The existence of rarefactive and compressive solitary waves is proved. Also, the plasma system under consideration supports both nonlinear and supernonlinear DA periodic waves. It has been found that the double spectral indices r and q play a decisive effect on the bifurcation of the waves.  相似文献   

20.
We solve a two-dimensional telegraph equation with anisotropic parameters, which models the propagation of electromagnetic waves in the Earth–ionosphere waveguide, in the frequency range 0.1-30 Hz. The results are generalized to allow for the Earth's sphericity and the horizontal inhomogeneity of the waveguide. It is shown that the resonance character of reflection from the ionosphere at frequencies below 10 Hz becomes pronounced for the horizontal magnetic-field components and for the vertical electric-field component of a horizontal dipole. In the case of low solar activity under nighttime conditions, the oscillations in the frequency dependences of the field components are much more pronounced compared with the case of high solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号