首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Understanding the adsorption of polymers onto particles is crucial for many technological and biomedical applications. Even though polymer adsorption on particles is a dynamic process, most experimental techniques can only study the adsorption indirectly, in equilibrium and on the ensemble level. New analysis methods are required to overcome these limitations. We investigated the use of single-particle electrophoresis to study the adsorption kinetics of cationic polymers onto anionic particles and compared the resulting data to a theoretical model. In this approach, the electrophoretic mobility of single polystyrene (PS) particles, exposed to different concentrations of poly(2-guanidinoethyl methacrylate), was measured as a function of time. The polymer adsorption leads to an electrophoretic mobility change of the PS particle over time, from the initial negative value to a positive value at equilibrium. By fitting the kinetics data to the Langmuir model, the adsorption rate, desorption rate and equilibrium constant were determined. Finally, the adsorption kinetics of several other polymers was investigated. This showed that the presented technique enables direct analysis and comparison of the kinetics of polymer adsorption on the single-particle level.  相似文献   

2.
The focus of our work has been to develop a theory of adsorption kinetics for polyelectrolytes in a flow cell onto planar surfaces in the framework of the two-dimensional model and to study adsorption processes of polyelectrolytes on a planar surface by ellipsometry. We have studied the adsorption kinetics of water-soluble cationic poly(vinylamine) hydrochloride homopolymer from aqueous solution onto both silicon wafers and polystyrene films by ellipsometry. Equations were derived to calculate (a) the equilibrium adsorption, (b) the thickness of the adsorbed layer, (c) the activation energy of adsorption for water-soluble polyelectrolytes, (d) the rate constant for the water-soluble polyelectrolytes, (e) the effective coefficients of diffusion in the adsorbed layer, and (f) the time needed to attain the equilibrium state for the adsorption of the water-soluble polyelectrolytes in a flow cell. Copyright 1999 Academic Press.  相似文献   

3.
During the coating of metal plates by carboxyl-containing polymers from their solutions or dispersions, adsorption of the polymer onto the surface and oxidation of the metal by oxygen take place. Adsorption of polyacrylic acid and its copolymers with acrylonitrile at the copper surface and kinetics of copper dissolving in the presence of carboxyl-containing polymers and hydrogen peroxide have been investigated. The adsorption of polymers at the surface of the copper powder passes through a maximum when the content of acrylonitrile in copolymers rises. The rate at which copper dissolves increases with increased polymer concentration in solution, reaching a constant value, and does not depend on the hydrogen peroxide concentration. The rate at which copper dissolves depends on the rate of copper oxidation by hydrogen peroxide in the adsorption layer and the rate of polymer desorption. The increase of the solution pH leads to a decrease in the adsorption of polyacrylic acid at the copper surface and the rate at which copper dissolves in the presence of hydrogen peroxide.  相似文献   

4.
The adsorption of two dextrin-based polymers, a regular wheat dextrin (TY) and a carboxymethyl-substituted (CM) dextrin, onto an anatase TiO(2) particle film has been studied using in situ attenuated total reflection (ATR) FTIR spectroscopy. Infrared spectra of the polymer solutions and the polymer adsorbed at the anatase surface were acquired for two solution conditions: pH 3 and pH 9; below and above the isoelectric point (IEP) of anatase, respectively. Comparison of the polymer solution spectra and the adsorbed layer spectra highlighted a number of spectral differences that were attributed to involvement of the carboxyl group of CM Dextrin interacting with the anatase surface directly and the adsorption of oxidized dextrin chains in the case of regular dextrin (TY) at high pH. The adsorption/desorption kinetics were determined by monitoring spectral peaks of the pyranose ring of both polymers. Adsorption equilibrium was not established for Dextrin TY for many hours, whereas CM Dextrin reached equilibrium in its adsorption within 60 min. The extent of desorption of Dextrin TY (observed by flowing a background electrolyte dextrin-free solution) was extensive at both pH values, which reflects the poor affinity and binding of the polymer on anatase. In contrast, CM Dextrin underwent almost no desorption, indicating a high affinity between the carboxyl groups of the polymer and the anatase surface.  相似文献   

5.
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.  相似文献   

6.
When a homopolymer adsorbs from dilute solution onto a solid surface it first attaches and then maximises its number of contacts with the substrate by means of a spreading process. Evidence for this spreading process can be obtained from experiments on the adsorption kinetics. We report on a case where the adsorption kinetics depend on the rate at which the polymer was supplied to the surface (a protein adsorbing onto silica). Also, we discuss competitive adsorption experiments in which one kind of chain molecule attempts to displace another one from the surface. In these experiments, the desorption rate of the displaced species reflects the spreading rate of the displacer. When this rate is slower than the supply of displacer molecules, oversaturated layers result that spontaneously eject polymer. We have measured the rate of these displacement-driven desorption processes in various cases and conclude that it depends strongly on the energy of the segment-surface bond. A model involving the diffusion of defects over the surface may account for this finding.  相似文献   

7.
Preferential and exchange adsorption of polymers differing in molar mass and/or chemical nature under dynamic conditions were investigated using on-line size-exclusion chromatography (SEC). The sample investigated dissolved in an appropriate solvent was injected into a small adsorption–desorption column packed with nonporous silica. A nonadsorbed or desorbed fraction of the polymer was directed into an SEC column for determination of both the amount and the molecular characteristics. This approach is in many aspects superior to other techniques for studies of polymer adsorption onto solid surfaces due to its low sample and time consumption. At a low degree of surface coverage, adsorption and desorption of macromolecules were rapid and were affected by the rate of supply of macromolecules to the adsorbent surface. The exchange between macromolecules at the stage of surface saturation was found to depend on the mean molar masses of preadsorbed and displacing polymer species and possibly also on the chain flexibility of the macromolecules. It was shown that the preferential adsorption driven by the chain-length difference upon saturation of the adsorbent surface was more noticeable if the preadsorbed macromolecules were smaller. Received: 7 April 1999 Accepted in revised form: 21 July 1999  相似文献   

8.
A phenomenological (mean-field) mathematical model of unimolecular reactions proceeding onto inhomogeneous planar surfaces is presented and investigated numerically in two-dimensional in space case taking into account the adsorption and desorption of reactant particles, long-range surface diffusion of the adsorbed particles, and an instantaneous product desorption from an adsorbent. The model also involves the bulk diffusion of the reactant from the bounded vessel towards the adsorbent and the product bulk one from the adsorbent into the same vessel. Simulations were performed using the finite difference technique. The influence of the long-range surface diffusion of adsorbed particles on the kinetics for processes catalyzed by inhomogeneous surfaces with a different arrangement of reactive and non-reactive adsorption sites is studied.  相似文献   

9.
We have developed a two‐stage process to graft poly(ethylene oxide) (PEO) onto a silica surface. In the first stage the adsorption of an anchor reactive polymer to the surface is carried out, and in the second stage the grafting of compatibilizing macromolecular tails is performed via the reactions of functional groups of the polymer anchored. Random copolymers of styrene and maleic anhydride (SM) were chosen as reactive anchoring polymers. The kinetics of adsorption of SM from dilute solutions onto the silica surface as well as the grafting of PEO to SM macromolecules adsorbed was experimentally investigated by null ellipsometry. A model of the structure at the surface is proposed.  相似文献   

10.
Two SiO2 and three Al2O3 adsorbents with varying degrees of mesoporosity (pore diameter 2-50 nm) were reacted with 2,4-dichlorophenoxyacetic acid (2,4-D) at pH 6 to investigate the effects of intraparticle mesopores on adsorption/desorption. Anionic 2,4-D did not adsorb onto either SiO2 solid, presumably because of electrostatic repulsion, but it did adsorb onto positively charged Al2O3 adsorbents, resulting in concave isotherms. The Al2O3 adsorbent of highest mesoporosity consistently adsorbed more 2,4-D per unit surface area than did the nonporous and less mesoporous Al2O3 adsorbents over a range of initial 2,4-D solution concentrations (0.025-2.5 mM) and reaction times (30 min-55 d). Differences in adsorption efficiency were observed despite equivalent surface site densities on the three Al2O3 adsorbents. Hysteresis between the adsorption/desorption isotherms was not observed, indicating that adsorption is reversible. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy studies confirm that 2,4-D adsorption does not occur via ligand exchange, but rather via electrostatic interaction. The results indicate that adsorbent intraparticle mesopores can result in consistently greater 2,4-D adsorption, but the amount adsorbed is dependent upon surface charge and the presence of adsorbent mesoporosity. The data also suggest that when mineral pores are significantly larger than the adsorbate, they do not contribute to diffusion-limited adsorption/desorption hysteresis. Adsorbent transformations through time are discussed.  相似文献   

11.
Graphene oxide (GO) nanosheets have been immobilized onto SiO(2) particles through electrostatic interactions by surface assembly. The surface-assembled composite material was characterized by means of SEM and FTIR and UV/Vis spectroscopy to reveal an assembling ratio of 2.3% (w/w, GO/SiO(2)). The GO/SiO(2) composites were subsequently used, for the first time, as adsorbents for the adsorption/isolation of proteins. Selective isolation of proteins of interest, namely, hemoglobin (Hb) in this case, from complex sample matrices, for example, human whole blood, could be obtained by carefully manipulating the adsorption/desorption process. At pH 7, an adsorption of 85% was achieved for Hb (70 mg L(-1)) in sample solution (1.0 mL) by the GO/SiO(2) composites (3.0 mg). The adsorption behavior was consistent with the Langmuir adsorption model, corresponding to a theoretical adsorption capacity of 50.5 mg g(-1) for Hb. The retained Hb could be readily recovered by using a Tris-HCl buffer at pH 8.9 to give a recovery of 80%. Circular dichroism and specific activity investigations indicated that the GO/SiO(2) composites exhibited favorable biocompatibility, characterized by virtually no effect on the conformation and activity of Hb after adsorption/desorption. The composites were used for the selective isolation of Hb from human whole blood and achieved satisfactory results by assaying with sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

12.
Adsorption behavior of cationic polymers on bentonite   总被引:1,自引:0,他引:1  
The adsorption behavior of a series of cationic water-soluble polymers poly(diallyldimethylammonium chloride) with different molar masses onto raw bentonite was investigated through the elaboration of their adsorption isotherms and the quantification of the water content of the clay/polymer complexes formed. It was found that the type of adsorption isotherms obtained depends on the chain length of the polymer. The study showed a correlation between the amount of adsorbed polymer and the water content of the clay, after the adsorption experiments. The lower the molar mass of the polymer used, the larger was the reduction on water content of the complexes.  相似文献   

13.
An in situ ATR-FTIR study of polyacrylamide adsorption at the talc surface   总被引:1,自引:0,他引:1  
The adsorption of a low molecular weight unmodified polyacrylamide (Polymer-N) and a hydroxyl-substituted polyacrylamide (Polymer-H) onto talc was studied using in situ particle film ATR-FTIR spectroscopy in the multiple internal reflection mode. Spectra of the adsorbed polymer were collected as a function of increasing concentration and as a function of time. Measurement of the peak intensities of the adsorbed polymer allowed adsorption isotherms and adsorption kinetics to be determined for both polymers. Langmuir adsorption isotherm analysis of in situ data yielded Gibbs free energies of adsorption (deltaG0(ads)) for Polymer-N and Polymer-H of -44.5 and -45.7 kJ/mol, respectively, which correlate well with similar values determined from ex situ adsorption isotherms. Kinetic analysis indicated that the adsorption of both polymers was a pseudo-first-order process. The apparent rate constants for Polymer-N and Polymer-H were 0.10 and 0.15 min(-1), respectively. Absence of spectral shifts in the spectra of adsorbed polymer is indicative of a hydrophobic interaction between the polyacrylamides and the talc surface.  相似文献   

14.
Neutral polymeric surfactants were synthesized by covalent attachment of hydrophobic groups (aromatic rings) onto a polysaccharide backbone (dextran). By changing the conditions of the modification reaction, the number of grafted hydrophobic groups per 100 glucopyranose units (substitution ratio) was varied between 7 and 22. In aqueous solution, these polymers behaved like classical associative polymers as demonstrated by viscometric measurements. The associative behavior was more pronounced when the substitution ratio increased. The surface-active properties of the modified dextrans were evidenced by surface tension (air/water) and interfacial tension (dodecane/water) measurements. In each case the surface or interfacial tension leveled down above a critical polymer concentration, which was attributed to the formation of a dense polymer layer at the liquid-air or liquid-liquid interface. Dodecane-in-water emulsions were prepared using the polymeric surfactants as stabilizers, with oil volume fractions ranging between 5 and 20%. The oil droplet size (measured by dynamic light scattering) was correlated to the amount of polymer in the aqueous phase and to the volume of emulsified oil. The thickness of the adsorbed polymer layer was estimated thanks to zeta potential measurements coupled with size measurements. This thickness increased with the amount of polymer available for adsorption at the interface. The dextran-based surfactants were also applied to emulsion polymerization of styrene and stable polystyrene particles were obtained with a permanent adsorbed dextran layer at their surface. The comparison with the use of an unmodified dextran indicated that the polymeric surfactants were densely packed at the surface of the particles. The colloidal stability of the suspensions of polystyrene particles as well as their protection against protein adsorption (bovine serum albumin, BSA, used as a test protein) were also examined.  相似文献   

15.
将5-氨基水杨酸接枝到PGMA/SiO2微粒的聚甲基丙烯酸缩水甘油酯(PGMA)大分子链上,成功制备了一种新型螯合吸附材料ASA-PGMA/SiO2。采用静态法研究了ASA-PGMA/SiO2对重金属离子Cu2+、Cd2+、Zn2+、Pb2+的吸附性能,结果表明其对Cu2+、Cd2+、Zn2+、Pb2+具有很强的螯合吸附能力,吸附容量分别可以达到0.42、0.40、0.35、0.31mmol/g。体系的pH对吸附容量影响较大,吸附行为服从Langmuir和Freundlich吸附模型。使用0.1mol/L的盐酸溶液就可实现重金属离子的解吸。通过反复吸附-解吸实验证明ASA-PGMA/SiO2具有良好的重复使用性能。  相似文献   

16.
The buildup of layer-by-layer assemblies onto gold surfaces from water-soluble charged polyelectrolytes and proteins is examined using quartz crystal microgravimetry (QCM) and electrochemical techniques. Polyelectrolytes such as poly(styrenesulfonate) and poly(ester sulfonic acid) (Eastman AQ-29D polymer) adsorb spontaneously onto gold, contrary to poly(ethyleneimine). From the modification of the gold surface with a thiol and specific adsorption of polymers under polarization conditions, it is concluded that the hydrophobicity of the gold surface seems to be a determining factor in the adsorption process. Alternate adsorption onto gold resonators first coated with AQ-29D polymer gives stable multilayer films in the case of positively charged lysozyme (pI = 11) or polyheme Desulfovibrio vulgaris Hildenborough cytochrome c3 (pI = 10.5). QCM frequency changes with the number of adsorption steps suggest that a linear increase in film mass occurs. Desulfomicrobium norvegicum polyheme cytochrome c3 (pI = 7), which has a null global charge at neutral pH, is shown to give also stable multilayer AQ-29D/cytochrome c3 films, suggesting that several types of interactions, especially the hydrophobic effect, are involved in the buildup process.  相似文献   

17.
Associating polymers are hydrophilic long-chain molecules containing a small number of hydrophobic groups, and act as flocculants in aqueous suspensions. The effects of associating and nonassociating polymers on viscosity behavior are studied for silica suspensions. Since flocculation is induced by polymer bridging, the viscosity behavior is converted from Newtonian to shear-thinning profiles. The additions of surfactant cause an increase in viscosity for suspensions prepared with associating polymer, whereas the flow behavior of suspensions with nonassociating polymer is not significantly influenced. In adsorption of associating polymers onto silica particles, the chain may adopt a conformation with a water-soluble backbone attached to the particle surfaces. The hydrophobic groups extending from the chains adsorbed onto different particles can form a micelle by association with surfactant. Therefore, the bridging flocculation is enhanced by surfactant. The cooperative micellar formation between associating polymer and surfactant is responsible for viscosity increase in suspensions.  相似文献   

18.
Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with beta-cyclodextrin self-assembled monolayers (beta-CD SAMs) by inclusion of the hydrophobic substituents in the beta-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible. Even with a monovalent competitor in solution, adsorption to the beta-CD SAMs was observed, and desorption proved impossible. The adsorbed polymer layer was very thin as evidenced by surface plasmon resonance spectroscopy and AFM. Apparently, all or most hydrophobic groups of the polymers were employed efficiently in multivalent binding, as was further supported by the absence of specific binding of beta-CD-modified gold nanoparticles to the polymer surface assemblies. Supramolecular microcontact printing of the polymers onto the beta-CD SAMs led to assembly formation in the targeted areas of the substrates.  相似文献   

19.
In this paper we investigate two-dimensional in space mathematical models of the kinetics of unimolecular heterogeneous reactions proceeding onto planar surfaces. The models are based on Langmuir-type kinetics of the adsorption, desorption, and reaction including the surface diffusion of the adsorbate, surface diffusion of the product before its desorption, and slow desorption of the product from the adsorbent. It is also assumed that the reactant diffuses towards an adsorbent from a bounded vessel and the product diffuses from the adsorbent into the same vessel. Diffusivity of all species and kinetic coefficients are constants. The numerical simulation was carried out using the finite difference technique for four models: one model neglects the surface diffusion of the adsorbate and product, the second one includes the surface diffusion of the adsorbate and product, the third of them includes the surface diffusion of the adsorbate and neglects diffusion of the product along the surface, and the last one neglects the surface diffusion of the adsorbate and includes diffusion of the product along the adsorbent. By changing input parameters effects of the surface diffusion of the adsorbate and product and the slow desorption of the product are studied numerically.  相似文献   

20.
We describe a novel technology based on changes in the resonant frequency of an acoustically actuated surface and use it to measure temporal changes in the surface energy gamma (N m(-1)) of an elastomeric polymer membrane due to the adsorption of macromolecules from aqueous solution. The resonant elastomeric surface-tension (REST) sensor permits simultaneous determination of mass loading kinetics and gamma(t) for a given adsorption process, thereby providing a multivariable data set from which to build and test models of the kinetics of adsorption at solid-liquid interfaces. The technique is used to measure gamma(t) during the adsorption of either sodium dodecyl sulfate (SDS) or hen egg-white lysozyme (HEWL) onto an acrylic polymer membrane. The adsorption of SDS is reversible and is characterized by a decrease in gamma over a time period that coincides with that required for the mass loading of the membrane. For the adsorption of HEWL labeled with Alexa Fluor 532 dye, gamma continues to change long after the surface concentration of labeled HEWL, measured by using the elastomeric polymer membrane as an optical waveguide, reaches steady state. Gradual but significant changes in gamma(t) are observed as long as the concentration of protein in the bulk solution, c(b), remains nonzero. HEWL remains adsorbed to the membrane when c(b) = 0, but changes in gamma(t) are not observed under this condition, indicating that the interaction of bound protein molecules with those free in solution contribute to the prolonged change in the surface energy. This observation has been used to define a new model for the kinetics of globular protein adsorption to a solid-liquid interface that includes a mechanism by which the molecules in the bulk can facilitate the desorption of a sorbate molecule or change the energetic states of adsorbed molecules and, thus, the overall surface energy. The model is shown to capture the unique features of protein adsorption kinetics, including the relatively fast mass loading, the much more gradual change in surface energy that does not cease until the protein is removed from the bulk, the rapid desorption of an incubation-time-dependent fraction of bound protein when the protein is removed from the bulk, and the fixing of the residual surface concentration and surface energy at constant values once the removal of reversibly bound protein and free protein is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号