首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The behavior of self‐assembly processes of nanoscale particles on plasma membranes can reveal mechanisms of important biofunctions and/or intractable diseases. Self‐assembly of citrate‐coated gold nanoparticles (cAuNPs) on liposomes was investigated. The adsorbed cAuNPs were initially fixed on the liposome surfaces and did not self‐assemble below the phospholipid phase transition temperature (Tm). In contrast, anisotropic cAuNP self‐assembly was observed upon heating of the composite above the Tm, where the phospholipids became fluid. The number of self‐assembled NPs is conveniently controlled by the initial mixing ratio of cAuNPs and liposomes. Gold nanoparticle protecting agents strongly affected the self‐assembly process on the fluidic membrane.  相似文献   

2.
The use of a thiol‐functionalized nonionic surfactant to stabilize spherical gold nanoparticles in water induces the spontaneous formation of polyrotaxanes at the nanoparticle surface in the presence of the macrocycle α‐cyclodextrin. Whereas using an excess of surfactant an amorphous gold nanocomposite is obtained, under controlled drying conditions the self‐assembly between the surface supramolecules provides large and homogenous supercrystals with hexagonal close packing of nanoparticles. Once formed, the self‐assembled supercrystals can be fully redispersed in water. The reversibility of the crystallization process may offer an excellent reusable material to prepare gold nanoparticle inks and optical sensors with the potential to be recovered after use.  相似文献   

3.
The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM‐41 nanoparticles functionalized on the outer surface with polymer ε‐poly‐L ‐lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3]2+. An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate‐functionalized MCM‐41 nanoparticles with the lysine amino groups located on the ε‐poly‐L ‐lysine backbone (solid Ru‐rLys‐S1 ). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl‐functionalized MCM‐41 nanoparticles (solid Ru‐tLys‐S1 ). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε‐poly‐L ‐lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer’s amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme‐controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug‐delivery systems was tested by preparing the corresponding ε‐poly‐L ‐lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT‐rLys‐S1 and CPT‐tLys‐S1 . Cellular uptake and cell‐death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated.  相似文献   

4.
A major objective of nanomedicine is to combine in a controlled manner multiple functional entities into a single nanoscale device to target particles with great spatial precision, thereby increasing the selectivity and potency of therapeutic drugs. A multifunctional nanoparticle is described for controlled conjugation of a cytotoxic drug, a cancer cell targeting ligand, and an imaging moiety. The approach is based on the chemical synthesis of polyethylene glycol that at one end is modified by a thioctic acid for controlled attachment to a gold core. The other end of the PEG polymers is modified by a hydrazine, amine, or dibenzocyclooctynol moiety for conjugation with functional entities having a ketone, activated ester, or azide moiety, respectively. The conjugation approach allowed the controlled attachment of doxorubicin through an acid‐labile hydrazone linkage, an Alexa Fluor dye through an amide bond, and a glycan‐based ligand for the cell surface receptor CD22 of B‐cells using strain promoted azide‐alkyne cycloaddition. The incorporation of the ligand for CD22 led to rapid entry of the nanoparticle by receptor‐mediated endocytosis. Covalent attachment of doxorubicin via hydrazone linkage caused pH‐responsive intracellular release of doxorubicin and significantly enhanced the cytotoxicity of nanoparticles. A remarkable 60‐fold enhancement in cytotoxicity of CD22 (+) lymphoma cells was observed compared to non‐ targeted nanoparticles.  相似文献   

5.
The objective of this study is to utilize the pH sensitivity of modified mesoporous silica nanoparticles (MSN) for oral drug delivery. In the first time, a pH‐sensitive ionic liquid was synthesized through the quaternization of 3‐aminopropyltrimethoxysilane (3‐ATMS) with sodium monochloroacetate (SMCA). Then, silica nanoparticle was modified by this pH‐sensitive ionic liquid and converted to a pH‐sensitive positive‐charge silica nanoparticle (PCSN). The nanoparticle was characterized by FTIR and SEM. Naproxen as anionic drug molecules was entrapped in this pH‐sensitive positive‐charge silica nanoparticles (PCSN) and the in vitro release profiles were established separately in both (SGF, pH 1) and (SIF, pH 7.4).  相似文献   

6.
Gold nanoparticles have been developed for the photoacoustic imaging, delivery of genes and laser induced photothermal therapy. In this study, we have developed oligonucleotide conjugated gold nanoparticles as the carrier for simultaneous DNA and anti‐cancer nucleoside delivery. The polynucleotidenanoparticle complex presented higher capacity in carrying 5‐FU anti‐cancer compounds than the original gold particles. The hydrodynamic size of the gold nanoparticles increased from 25 to 35 nm with an increase in the negative surface charge from ?9.58 to 21.66 mV after polynucleotide conjugation and drug loading. A positive association between environmental pH and drug release was observed in PBS, which implied their potential use in the controlled localized drug release in the lower GI tract. The MTT assay revealed dose dependent cytotoxicity to colon cancer cell line than free compounds. These results suggest the potential use of this new polynucleotide‐gold nanoparticles complex as the environmental controlled anti‐cancer nanocapsule, especially suitable for per oral colon cancer chemotherapy.  相似文献   

7.
A mono‐substituted resveratrol derivative, resveratrol‐modified stearate (RMS), was synthesized by selectively coupling of stearic acid to the monohroxyphenyl of resveratrol in order to enhance both the stability and bioavailability of resveratrol. The RMS self‐assembles into liposomes and a series of suprastructural transformations into metastable helical ribbon, linear wire‐like structures, and inert spherical nanoparticles were detected that may be induced by the hydrogen‐bonding interactions. As a model for drug‐release investigations, gold nanoparticles (AuNPs) were encapsulated successfully by RMS to generate vesicles and succeed to release AuNPs druing the transformation to a ribbon‐like metastable stucture at ambient temperature.  相似文献   

8.
9.
Multiwall carbon nanotubes (MWNT) were modified orderly with carboxyl groups and amino groups. The MWNT/gold nanoparticle composites were formed when the amino‐functionalized MWNT was interacted with gold colloids. The functionalized MWNT was characterized using Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The amino‐functionalized MWNT allows further attaching gold nanoparticles through electrostatic interaction between the negatively charged gold nanoparticles and amino groups on the surface of the MWNT. The composite of gold nanoprticles and amino‐functionalized MWNT was characterized by transmission electron microscopy. This method decorating carbon nanotubes can be used to identify the location of functional groups, i.e. defect sites on carbon nanotubes.  相似文献   

10.
In this article, pH‐responsive near‐infrared emitting conjugated polymer nanoparticles (CPNs) are prepared, characterized, and their stabilities are investigated under various conditions. These nanoparticles have capacity to be loaded with water insoluble, anticancer drug, camptothecin (CPT), with around 10% drug loading efficiency. The in vitro release studies demonstrate that the release of CPTs from CPNs is pH‐dependent such that significantly faster drug release at mildly acidic pH of 5.0 compared with physiological pH 7.4 is observed. Time and dose‐dependent in vitro cytotoxicity tests of blank and CPT‐loaded nanoparticles are performed by real‐time cell electronic sensing (RT‐CES) assay with hepatocellular carcinoma cells (Huh7). The results indicate that CPNs can be effectively utilized as vehicles for pH‐triggered release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 114–122  相似文献   

11.
We report a new approach to selectively deliver antimicrobials to the sites of bacterial infections by utilizing bacterial toxins to activate drug release from gold nanoparticle-stabilized phospholipid liposomes. The binding of chitosan-modified gold nanoparticles to the surface of liposomes can effectively prevent them from fusing with one another and from undesirable payload release in regular storage or physiological environments. However, once these protected liposomes "see" bacteria that secrete toxins, the toxins will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. Using methicillin-resistant Staphylococcus aureus (MRSA) as a model bacterium and vancomycin as a model anti-MRSA antibiotic, we demonstrate that the synthesized gold nanoparticle-stabilized liposomes can completely release the encapsulated vancomycin within 24 h in the presence of MRSA bacteria and lead to inhibition of MRSA growth as effective as an equal amount of vancomycin-loaded liposomes (without nanoparticle stabilizers) and free vancomycin. This bacterial toxin enabled drug release from nanoparticle-stabilized liposomes provides a new, safe, and effective approach for the treatment of bacterial infections. This technique can be broadly applied to treat a variety of infections caused by bacteria that secrete pore-forming toxins.  相似文献   

12.
A new prototype of reversible self‐assembly between functionalized gold and titanium dioxide nanoparticles (NPs) utilizing hydrogen bonding interactions was developed and established. The gold nanoparticles were functionalized with a Hamilton‐receptor functionality bearing a thiol moiety as anchoring group. The titanium dioxide nanoparticles were modified with cyanurate derivatives which contained phosphonic acids as anchoring groups. The host–guest type interaction between two functionalized nanoparticles yielded a highly integrated nanoparticle system in chloroform. Moreover, by presenting a competing ligand in an exchange reaction, the product of self‐assembly can be segregated into the individual soluble components of functionalized nanoparticles. The self‐assembly and the exchange reaction were followed and monitored in detail by UV/Vis spectroscopy. The structure of the self‐assembly product was investigated using scanning electron microscopy (SEM) and small‐angle X‐ray scattering (SAXS).  相似文献   

13.
Gold nanoparticles protected by a novel π‐conjugated polymer [poly(p‐phenylene ethynylene) containing pendent disulfide and bipyridine groups] are synthesized and characterized. The polymer can stabilize the gold nanoparticles effectively. The nonlinear optical properties of the gold nanoparticle colloid solutions in toluene are investigated by using the Z‐scan technique at a wavelength of 532 nm and pulse width of 4 ns. The gold‐nanoparticle colloid solutions show an exceptional nonlinear absorption effect, which simultaneously contains the saturated absorption resulting from third‐order nonlinearity and a large reverse‐saturated absorption resulting from fifth‐order nonlinearity. In addition, asymmetric self‐focusing refractive effects are investigated in the colloid solutions.  相似文献   

14.
A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co‐delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as‐prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI‐FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI‐FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co‐delivery system to selectively bind with and enter into the target cancer cells. PEI‐FA‐coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI‐FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH‐controlled release. In vitro pH‐responsive drug/siRNA co‐delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF‐7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH‐responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl‐2 protein into the HeLa cells, the expression of the anti‐apoptotic protein Bcl‐2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and targeted drug and gene co‐delivery in cancer treatment.  相似文献   

15.
The interaction of biocompatible, exponentially grown films composed of poly‐L ‐lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non‐aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near‐infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.  相似文献   

16.
The condensation of DNA in a controlled manner is one of the key steps in gene delivery and gene therapy. For this purpose, a water‐soluble supramolecular nanostructure is constructed by coating 14 β‐cyclodextrins onto the surface of a gold nanoparticle, followed by the noncovalent association of different amounts of anthryl‐modified adamantanes with coated β‐cyclodextrins. The strong binding of β‐cyclodextrins with anthryl adamantanes (KS=8.61×104 M ?1) efficiently stabilizes the supramolecular nanostructure. Spectrophotometric fluorescence spectra and microscopic studies demonstrated that, with many anthryl grafts that can intercalate in the outer space of the DNA double helix, this supramolecular nanostructure showed good condensation abilities to calf thymus DNA. Significantly, the condensation efficiency of supramolecular nanostructure towards DNA could be conveniently controlled by adjusting the ratio between gold nanoparticles and anthryl adamantane grafts, leading to the formation of DNA condensates of a size that are suitable for the endocytosis of hepatoma cells, which will make it potentially applicable in many fields of medicinal science and biotechnology.  相似文献   

17.
In the present research, we have investigated a drug delivery system based on the pH‐responsive behaviors of zein colloidal nanoparticles coated with sodium caseinate (SC) and poly ethylene imine (PEI). These systematically designed nanoparticles were used as nanocarriers for encapsulation of ellipticine (EPT), as an anticancer drug. SC and PEI coatings were applied through electrostatic adsorption, leading to the increased size and improved polydispersity index of nanoparticles as well as sustained release of drug. Physicochemical characteristics such as hydrodynamic diameter, size distribution, zeta potential and morphology of nanoparticles prepared using different formulations and conditions were also determined. Based on the results, EPT was encapsulated into the prepared nanoparticles with a high drug loading capacity (5.06%) and encapsulation efficiency (94.8%) under optimal conditions. in vitro experiments demonstrated that the release of EPT from zein‐based nanoparticles was pH sensitive. When the pH level decreased from 7.4 to 5.5, the rate of drug release was considerably enhanced. The mechanism of pH‐responsive complexation in the drug encapsulation and release processes was extensively investigated. The pH‐dependent electrostatic interactions and drug state were hypothesized to affect the release profiles. Compared to the EPT‐loaded zein/PEI nanoparticles, the EPT‐loaded zein/SC nanoparticles exhibited a better drug sustained‐release profile, with a smaller initial burst release and longer release period. According to the results of in vitro cytotoxicity experiments, drug‐free nanoparticles were associated with a negligible cytotoxicity, whereas the EPT‐loaded nanoparticles displayed a high toxicity for the cancer cell line, A549. Our findings indicate that these pH‐sensitive protein‐based nanoparticles can be used as novel nanotherapeutic tools and potential antineoplastic drug carriers for cancer chemotherapy with controlled release.  相似文献   

18.
mTHPC is a non polar photosensitizer used in photodynamic therapy. To improve its solubility and pharmacokinetic properties, liposomes were proposed as drug carriers. Binding of liposomal mTHPC to serum proteins and stability of drug carriers in serum are of major importance for PDT efficacy; however, neither was reported before. We studied drug binding to human serum proteins using size‐exclusion chromatography. Liposomes destruction in human serum was measured by nanoparticle tracking analysis (NTA). Inclusion of mTHPC into conventional (Foslip®) and PEGylated (Fospeg®) liposomes does not affect equilibrium serum protein binding compared with solvent‐based mTHPC. At short incubation times the redistribution of mTHPC from Foslip® and Fospeg® proceeds by both drug release and liposomes destruction. At longer incubation times, the drug redistributes only by release. The release of mTHPC from PEGylated vesicles is delayed compared with conventional liposomes, alongside with greatly decreased liposomes destruction. Thus, for long‐circulation times the pharmacokinetic behavior of Fospeg® could be influenced by a combination of protein‐ and liposome‐bound drug. The study highlights the modes of interaction of photosensitizer‐loaded nanovesicles in serum to predict optimal drug delivery and behavior in vivo in preclinical models, as well as the novel application of NTA to assess the destruction of liposomes.  相似文献   

19.
Low‐density graphite electrodes have been covalently modified with gold nanoparticles and used as scaffold for the oriented immobilization of Myrothecium verrucaria bilirubin oxidase. The developed nanobioelectrodes have been tested as a biocathode in a human‐serum surrogate buffer that mimics physiological conditions. The nanostructured bioelectrode offered a ?140 µA cm?2 current density under serum‐mimic conditions at 0.2 V, and was operational during at least 6 days.  相似文献   

20.
In this study, an adjustable pH‐responsive drug delivery system using mesoporous silica nanoparticles (MSNs) as the host materials and the modified polypeptides as the nanovalves is reported. Since the polypeptide can self‐assemble via electrostatic interaction at pH 7.4 and be disassembled by pH changes, the modified poly(l ‐lysine) and poly(l ‐glutamate) are utilized for pore blocking and opening in the study. Poly(l ‐lysine)‐MSN (PLL‐MSN) and poly(l ‐glutamate)‐MSN (PLG‐MSN) are synthesized via the ring opening polymerization of N‐carboxyanhydrides onto the surface of mesoporous silica nanoparticles. The successful modification of the polypeptide on MSN is proved by Zeta potential change, X‐ray photoelectron spectroscopy (XPS), solid state NMR, and MALDI‐TOF MS. In vitro simulated dye release studies show that PLL‐MSN and PLG‐MSN can successfully load the dye molecules. The release study shows that the controlled release can be constructed at different pH by adjusting the ratio of PLL‐MSN to PLG‐MSN. Cellular uptake study indicates that the drug is detected in both cytoplasm and nucleus, especially in the nucleus. In vitro cytotoxicity assay indicates that DOX loaded mixture nanoparticles (ratio of PLL‐MSN to PLG‐MSN is 1:1) can be triggered for drug release in HeLa cells, resulting in 88% of cell killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号