首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

2.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

3.
Solid electrolyte materials are crucial for the development of high‐energy‐density all‐solid‐state batteries (ASSB) using a nonflammable electrolyte. In order to retain a low lithium‐ion transfer resistance, fast lithium ion conducting solid electrolytes are required. We report on the novel superionic conductor Li9AlP4 which is easily synthesised from the elements via ball‐milling and subsequent annealing at moderate temperatures and which is characterized by single‐crystal and powder X‐ray diffraction. This representative of the novel compound class of lithium phosphidoaluminates has, as an undoped material, a remarkable fast ionic conductivity of 3 mS cm?1 and a low activation energy of 29 kJ mol?1 as determined by impedance spectroscopy. Temperature‐dependent 7Li NMR spectroscopy supports the fast lithium motion. In addition, Li9AlP4 combines a very high lithium content with a very low theoretical density of 1.703 g cm?3. The distribution of the Li atoms over the diverse crystallographic positions between the [AlP4]9? tetrahedra is analyzed by means of DFT calculations.  相似文献   

4.
The reaction of 1‐NHPhCHPh‐2‐NMe2C6H4 ( 1 ) and 1‐NHPhCHPhCH2‐2‐NMe2C6H4 ( 2 ) with n‐BuLi in diethyl ether gave the solvent‐free chelated dimethylamino lithium amides [1‐LiNPhCHPh‐2‐NMe2C6H4]2 ( 3 ) and [1‐LiNPhCHPhCH2‐2‐NMe2C6H4]2 ( 4 ). The lithium amides 3 and 4 were characterized by 1H, 7Li, and 13C NMR spectroscopy. A crystal structure determination was carried out on 4 , which is the first example of a structurally characterized solvent‐free dimeric chelated dimethylamino lithium arylamide with three‐coordinate lithium centers that contains a seven‐membered chelate ring. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Boronium cation-based ionic liquids (ILs) have demonstrated high thermal stability and a >5.8 V electrochemical stability window. Additionally, IL-based electrolytes containing the salt LiTFSI have shown stable cycling against the Li metal anode, the “Holy grail” of rechargeable lithium batteries. However, the basic spectroscopic characterisation needed for further development and effective application is missing for these promising ILs and electrolytes. In this work, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and density functional theory (DFT) calculations are used in combination to characterise four ILs and electrolytes based on the [NNBH2]+ and [(TMEDA)BH2]+ boronium cations and the [FSI] and [TFSI] anions. By using this combined experimental and computational approach, proper understanding of the role of different ion-ion interactions for the Li cation coordination environment in the electrolytes was achieved. Furthermore, the calculated vibrational frequencies assisted in the proper mode assignments for the ILs and in providing insights into the spectroscopic features expected at the interface created when they are adsorbed on a Li(001) surface. A reproducible synthesis procedure for [(TMEDA)BH2]+ is also reported. The fundamental findings presented in this work are beneficial for any future studies that utilise IL based electrolytes in next generation Li metal batteries.  相似文献   

6.
Single‐walled carbon nanotubes (SWNTs) covalently functionalized with redox‐active organo‐modified polyoxometalate (POM) clusters have been synthesized and employed as electrode materials in lithium ion batteries. The Anderson cluster [MnMo6O24]9? is functionalized with Tris (NH2C(CH2OH)3) moieties, giving the new organic–inorganic hybrid [N(nC4H9)4]3[MnMo6O18{(OCH2)3CNH2}2]. The compound is then covalently attached to carboxylic acid‐functionalized SWNTs by amide bond formation and the stability of this nanocomposite is confirmed by various spectroscopic methods. Electrochemical analyses show that the nanocomposite displays improved performance as an anode material in lithium ion batteries compared with the individual components, that is, SWNTs and/or Anderson clusters. High discharge capacities of up to 932 mAh g?1 at a current density of 0.5 mA cm?2 can be observed, together with high long‐term cycling stability and decreased electrochemical impedance. Chemisorption of the POM cluster on the SWNTs is shown to give better electrode performance than the purely physisorbed analogues.  相似文献   

7.
It is a very urgent and important task to improve the safety and high‐temperature performance of lithium/lithium‐ion batteries (LIBs). Here, a novel ionic liquid, 1‐(2‐ethoxyethyl)‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR1(2o2)TFSI), was designed and synthesized, and then mixed with dimethyl carbonate (DMC) as appropriate solvent and LiTFSI lithium salt to produce an electrolyte with high ionic conductivity for safe LIBs. Various characterizations and tests show that the highly flexible ether group could markedly reduce the viscosity and provide coordination sites for Li‐ion, and the DMC could reduce the viscosity and effectively enhance the Li‐ion transport rate and transference number. The electrolyte exhibits excellent electrochemical performance in Li/LiFeO4 cells at room temperature as well as at a high temperature of 60 °C. More importantly, with the addition of DMC, the IL‐based electrolyte remains nonflammable and appropriate DMC can effectively inhibit the growth of lithium dendrites. Our present work may provide an attractive and promising strategy for high performance and safety of both lithium and lithium‐ion batteries.  相似文献   

8.
Tin(II) fluoride (SnF2) has a high Li‐storage capacity because it stores lithium first by a conversion reaction and then by a Li/Sn alloying/dealloying reaction. A polyacrylonitrile (PAN)‐bound SnF2 electrode was heat‐treated to enhance the integral electrical contact and the mechanical strength through its cross‐linked framework. The heat‐treated SnF2 electrode showed reversible capacities of 1047 mAh g?1 in the first cycle and 902 mAh g?1 after 100 cycles. Part of the excess capacity is due to lithium storage at the Sn/LiF interface, and the other part is assumed to correspond to the presence of reduced SnF2 with protons released during the thermal cross‐linking of PAN.  相似文献   

9.
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co‐precipitation method using Li2CO3 as template and lithium‐source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge‐discharge cycling. The results indicate that the as‐synthesized materials by this novel method own a well‐ordered layered structure α‐NaFeO2 [space group: R‐3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g?1 at 0.1 C (1 C=180 mA·g?1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh·g?1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge‐discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability.  相似文献   

10.
Spinel cathode materials consisting of LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres have been synthesized by a facile solution‐phase coating and subsequent solid‐phase lithiation route in an atmosphere of air. When used as the cathode of lithium‐ion batteries, the double‐shell LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres thus obtained show a high specific capacity of 120 mA h g?1 at 1 C rate, and excellent rate capability (90 mAhg?1 at 10 C) over the range of 3.5–5 V versus Li/Li+ with a retention of 95 % over 500 cycles.  相似文献   

11.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

12.
The reaction thermodynamics of the 1,2‐dimethoxyethane (DME), a model solvent molecule commonly used in electrolytes for Li?O2 rechargeable batteries, has been studied by first‐principles methods to predict its degradation processes in highly oxidizing environments. In particular, the reactivity of DME towards the superoxide anion O2? in oxygen‐poor or oxygen‐rich environments is studied by density functional calculations. Solvation effects are considered by employing a self‐consistent reaction field in a continuum solvation model. The degradation of DME occurs through competitive thermodynamically driven reaction paths that end with the formation of partially oxidized final products such as formaldehyde and methoxyethene in oxygen‐poor environments and methyl oxalate, methyl formate, 1‐formate methyl acetate, methoxy ethanoic methanoic anhydride, and ethylene glycol diformate in oxygen‐rich environments. This chemical reactivity indirectly behaves as an electroactive parasitic process and therefore wastes part of the charge exchanged in Li?O2 cells upon discharge. This study is the first complete rationale to be reported about the degradation chemistry of DME due to direct interaction with O2?/O2 molecules. These findings pave the way for a rational development of new solvent molecules for Li?O2 electrolytes.  相似文献   

13.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

14.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

15.
Lithium metal is an ideal anode for next‐generation lithium batteries owing to its very high theoretical specific capacity of 3860 mAh g?1 but very reactive upon exposure to ambient air, rendering it difficult to handle and transport. Air‐stable lithium spheres (ASLSs) were produced by electrochemical plating under CO2 atmosphere inside an advanced aberration‐corrected environmental transmission electron microscope. The ASLSs exhibit a core–shell structure with a Li core and a Li2CO3 shell. In ambient air, the ASLSs do not react with moisture and maintain their core–shell structures. Furthermore, the ASLSs can be used as anodes in lithium‐ion batteries, and they exhibit similar electrochemical behavior to metallic Li, indicating that the surface Li2CO3 layer is a good Li+ ion conductor. The air stability of the ASLSs is attributed to the surface Li2CO3 layer, which is barely soluble in water and does not react with oxygen and nitrogen in air at room temperature, thus passivating the Li core.  相似文献   

16.
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries.  相似文献   

17.
Li–B–C alloys have attracted much interest because of their potential use in lithium‐ion batteries and superconducting materials. The formation of the new compound LiBC3 [lithium boron tricarbide; own structure type, space group P m 2, a = 2.5408 (3) Å and c = 7.5989 (9) Å] has been revealed and belongs to the graphite‐like structure family. The crystal structure of LiBC3 presents hexagonal graphene carbon networks, lithium layers and heterographene B/C networks, alternating sequentially along the c axis. According to electronic structure calculations using the tight‐binding linear muffin‐tin orbital‐atomic spheres approximations (TB–LMTO–ASA) method, strong covalent B—C and C—C interactions are established. The coordination polyhedra for the B and C atoms are trigonal prisms and for the Li atoms are hexagonal prisms.  相似文献   

18.
Singlet oxygen (1O2) causes a major fraction of the parasitic chemistry during the cycling of non‐aqueous alkali metal‐O2 batteries and also contributes to interfacial reactivity of transition‐metal oxide intercalation compounds. We introduce DABCOnium, the mono alkylated form of 1,4‐diazabicyclo[2.2.2]octane (DABCO), as an efficient 1O2 quencher with an unusually high oxidative stability of ca. 4.2 V vs. Li/Li+. Previous quenchers are strongly Lewis basic amines with too low oxidative stability. DABCOnium is an ionic liquid, non‐volatile, highly soluble in the electrolyte, stable against superoxide and peroxide, and compatible with lithium metal. The electrochemical stability covers the required range for metal–O2 batteries and greatly reduces 1O2 related parasitic chemistry as demonstrated for the Li–O2 cell.  相似文献   

19.
The coordination and energetics of low‐lying structures of [Li(EC)n]+ have been analyzed by density functional theory (DFT) and polarizable continuum model (PCM) at the B3LYP/6‐311+G (d, p) level. The results show that the first shell around the lithium ion is fully occupied with four ethylene carbonate (EC) molecules in both gas phase and solvent. The examination on the contribution of vibration entropy to free energy of isomers of [Li(EC)n]+ reveals that the stability of the best candidates at zero‐temperature cannot be maintained at finite temperatures due to the effects of their vibration entropy. In addition, structural transitions between the most stable four‐coordinated and the metastable three‐coordinated structure demand a very low energy barrier, suggesting that at a finite temperature the four‐coordinated and three‐coordinated isomers of [Li(EC)n]+ can coexist in the EC organic solvent lithium salt electrolyte. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Several ionic liquids (ILs) comprising [B(hfip)4]? [hfip=OCH(CF3)2] or [Al(hfip)4]? anions and imidazolium or ammonium cations were prepared and mixed with up to 270 mol % of dimethyl carbonate (DMC). The viscosities, conductivities, and self‐diffusion constants of these mixtures and, where possible, of the neat ILs were measured and compared with common [NTf2]? based ILs and their mixtures with DMC. A tremendous decrease of the viscosities and a likewise increase of the conductivities and diffusion constants can be achieved for all classes of ILs. However, the order of the conductivities is partially reversed in the diffusion data. This is probably due to the low dielectric constant of DMC and the, thus, favored ion pairing, as evidenced, for example, by the calculated ionicities. Altogether, our data show that the chemically robust, but high‐melting and more viscous [B(hfip)4]? ILs might be candidates for electrolytes when mixed with suitable molecular solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号