首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The most successful electrochemical conversion of ammonia from dinitrogen molecule reported to date is through a Li mediated mechanism. In the framework of the above fact and that Li anchored graphene is an experimentally feasible system, the present work is a computational experiment to identify the potential of Li anchored graphene as a catalyst for N2 to NH3 conversion as a function of (a) minimum number of Li atoms needed for anchoring on graphene sheets and (b) the role of chemical modification of graphene surfaces. The studies bring forth an understanding that Li anchored graphene sheets are potential catalysts for ammonia conversion with preferential adsorption of N2 through end-on configuration on Li atoms anchored on doped and pristine graphene surfaces. This mode of adsorption being characteristic of Nitrogen Reduction Reaction (NRR) through enzymatic pathway, examination of the same followed by analysis of electronic properties demonstrates that tri-Li atoms (Tri Atom Catalysts, TACs) are more efficient as catalysts for NRR as compared to two Li atoms (Di Atom Catalysts, DACs). Either way, the rate determining step was found to be *NH2→*NH3 step (mixed pathway) with ΔGmax=1.02 eV and *NH2−*NH3→*NH2 step (enzymatic pathway) with ΔGmax=1.11 eV for 1B doped TAC and DAC on graphene sheet, respectively. Consequently, this work identifies the viability of Li anchored graphene based 2-D sheets as hetero-atom catalyst for NRR.  相似文献   

2.
3.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析. 缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附. 计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

4.
To reveal the interaction mechanism between lithium (Li) and silicon/graphene (Si/Gra) interface at the atomic scale, it was calculated that the energy band structure, density of states, charge transfer, radial distribution function and Li diffusion coefficient based on the first principles. The results indicated that the volume expansion of Si was effectively limited by the Si/Gra interface during Li insertion. There appeared the interface effect of Si/Gra on the combination of Li and Si atoms, according to the longer Li-C (2.9 Å) and the larger electron cloud near the Li atom at the Si/Gra interface. The better diffusion channel for Li atoms was constructed at the Si/Gra interface, due to the lower diffusion energy barrier (0.42–0.44 eV) and higher diffusion coefficient (DLi = 0.784 × 10−4 cm2/s) for Li+ diffusion.  相似文献   

5.
A new approach to probe the effect of graphene on photochemical charge separation in donor–acceptor conjugates is devised. For this, multimodular donor–acceptor conjugates, composed of three molecules of pyrene, a subphthalocyanine, and a fullerene C60 ((Pyr)3SubPc‐C60), have been synthesized and characterized. These systems were hybridized on few‐layer graphene through π–π stacking interactions of the three pyrene moieties. The hybrids were characterized using Raman, HRTEM, and spectroscopic and electrochemical techniques. The energy levels of the donor–acceptor conjugates were fine‐tuned upon interaction with graphene and photoinduced charge separation in the absence and presence of graphene was studied by femtosecond transient absorption spectroscopy. Accelerated charge separation and recombination was detected in these graphene‐decorated conjugates suggesting that they could be used as materials for fast‐responding optoelectronic devices and in light energy harvesting applications.  相似文献   

6.
Density functional theory calculations were implemented to expand the knowledge about graphyne and its interaction with polycyclic aromatic hydrocarbons (PAHs). Due to the porous character of graphyne, the adsorption strength of PAHs onto graphyne surfaces is expected to be lower with respect to graphene (a perfect π‐extended system). However, there are not quantitative evidences for this assumption. This work shows that the adsorption strength of adsorbed PAHs onto γ‐graphyne nanosheets (GY) is weakened in 12 ? 23% with respect to the adsorption onto graphene, with a decrease of 10 ? 20% in the dispersive interactions. The adsorption energies (in eV) of the GY–PAH systems can be straightforward obtained as E ads/eV≈0.033N H + 0.031N C, where N H and N C is the number of H and C atoms in the aromatic molecule, respectively. This equation predicts the binding energy of graphene–graphyne bilayers with a value of ~31 meV/atom. Analysis of the electronic properties shows that PAHs behaves as n‐dopants for GY, introducing electrons in GY and also reducing its bandgap in up to ~0.5 eV. Strong acceptor or donor substituted PAHs decrease the bandgap of γ‐graphyne in up to ~0.8 eV, with changes in its valence or conduction band, depending on the chemical nature of the adsorbate. Finally, these data will serve for future studies related to the bandgap engineering of graphyne surfaces by nonaggressive molecular doping, and for the development of graphyne‐based materials with potential applications in the removal of persistent aromatic pollutants.  相似文献   

7.
First‐principles calculations are used to explore the strong binding of lithium to boron‐ and carbon‐doped BC2N monolayers (BC2NBC and BC2NCN, respectively) without the formation of lithium clusters. In comparison to BC2N and BC2NCB, lithium‐decorated BC2NBC and BC2NCN systems possess stronger s–p and p–p hybridization and, hence, the binding energy is higher. Lithium becomes partially positively charged by donating electron density to the more electronegative atoms of the sheet. Attractive van der Waals interactions are responsible for binding hydrogen molecules around the lithium atoms. Each lithium atom can adsorb three hydrogen molecules on both sides of the sheet, with an average hydrogen binding energy of approximately 0.2 eV, which is in the range required for practical applications. The BC2NBC–Li and BC2NCN–Li complexes can serve as high‐capacity hydrogen‐storage media with gravimetric hydrogen capacities of 9.88 and 9.94 wt %, respectively.  相似文献   

8.
Interactions of anions with simple aromatic compounds have received growing attention due to their relevancy in various fields. Yet, the anion–π interactions are generally very weak, for example, there is no favorable anion–π interaction for the halide anion F? on the simplest benzene surface unless the H‐atoms are substituted by the highly negatively charged F. In this article, we report a type of particularly strong anion–π interactions by investigating the adsorptions of three halide anions, that is, F?, Cl?, and Br?, on the hydrogenated‐graphene flake using the density functional theory. The anion–π interactions on the graphene flake are shown to be unexpectedly strong compared to those on simple aromatic compounds, for example, the F?‐adsorption energy is as large as 17.5 kcal/mol on a graphene flake (C84H24) and 23.5 kcal/mol in the periodic boundary condition model calculations on a graphene flake C113 (the supercell containing a F? ion and 113 carbon atoms). The unexpectedly large adsorption energies of the halide anions on the graphene flake are ascribed to the effective donor–acceptor interactions between the halide anions and the graphene flake. These findings on the presence of very strong anion–π interactions between halide ions and the graphene flake, which are disclosed for the first time, are hoped to strengthen scientific understanding of the chemical and physical characteristics of the graphene in an electrolyte solution. These favorable interactions of anions with electron‐deficient graphene flakes may be applicable to the design of a new family of neutral anion receptors and detectors. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法, 对Pt原子与γ-Al2O3(001)面的相互作用及迁移性能进行了研究. 分析了各种可能吸附位及吸附构型的松弛和变形现象, 吸附能和迁移能垒的计算结果表明: Pt团簇能够稳定吸附在该表面. Pt原子在表面O位的吸附能明显较高, 这主要是由Pt向基底O原子转移了电子所致. 电荷布居分析表明, Pt原子显电正性, Pt和Al原子之间存在排斥作用, 导致与Al原子产生较弱相互作用. 计算的平均吸附能大小依赖于Pt团簇的大小和形状, 总体趋势是随着Pt原子数增多, 吸附能降低. Pt原子在γ-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV. 随着吸附的Pt原子数增多,更倾向于形成Pt团簇. 因此, Pt原子在γ-Al2O3(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型, 而在一定条件下容易出现团聚.  相似文献   

10.
Maximizing the activity of materials towards the alkaline hydrogen evolution reaction while maintaining their structural stability under realistic working conditions remains an area of active research. Herein, we report the first controllable surface modification of graphene(G)/V8C7 heterostructures by nitrogen. Because the introduced N atoms couple electronically with V atoms, the V sites can reduce the energy barrier for water adsorption and dissociation. Investigation of the multi‐regional synergistic catalysis on N‐modified G/V8C7 by experimental observations and density‐functional‐theory calculations reveals that the increase of electron density on the epitaxial graphene enable it to become favorable for H* adsorption and the subsequent reaction with another H2O molecule. This work extends the range of surface‐engineering approaches to optimize the intrinsic properties of materials and could be generalized to the surface modification of other transition‐metal carbides.  相似文献   

11.
An artificial solid electrolyte interface (SEI) of a graphene composite lithium salt can inhibit the growth of dendrites by driving the lithium deposition behavior on the surface of the lithium metal anode. The first-principle method was used to calculate the graphene/lithium nitride SEI, including the structural form and stability of intrinsic (G-Li3N), single-vacancy defect (SVG-Li3N), and double-vacancy defect (DVG-Li3N) graphene heterostructure. The adsorption and migration behavior of lithium ions on the heterostructure surface and the interface were also calculated. This study showed that the modification of double-vacancy defect graphene improved the stability of the heterostructure, and the adhesion work of the composite SEI is the highest. The modification of defective graphene increases the adsorption energy of lithium atoms on the surface and interface of the heterostructure: the strongest adsorption of Li atoms on the single-vacancy defect region of the heterostructure, the opposition migration pathway of Li atoms on the surface and interface of the DVG-Li3N heterostructure, and the decrease diffusion energy of Li atoms on the surface and interface of the DVG-Li3N heterostructure. A composite layered SEI of graphene and Li3N was constructed to inhibit dendritic growth by adjusting the deposition behavior of lithium atoms.  相似文献   

12.
The structure and properties of the Li(HF)3Li cluster with C3h symmetry are investigated using ab initio calculations. This Li(HF)3Li is a metal–nonmetal–metal sandwich‐like cluster connected mainly by the intermolecular interactions. In the special cluster, the (HF)3 containing the triangular F ring with the negative charges is sandwiched between two Li atom. It is interesting that under the action of the triangular F ring with the negative charges, the valence electrons of two Li atoms are pushed out to form the distended excess electron cloud that surrounds the Li(HF)3Li as a core. So the Li(HF)3Li cluster shows not only the electride characteristic, but new superatom characteristics as well. Several characteristics of the special superatom are found. First, the superatom contains the double shell nucleus. The internal nucleus is the regular triangular ring made of three F atoms with the negative charge and the outer‐shell nucleus is made up of three H and two Li atoms with the positive charge. Second, the bonding force of this superatom framework is mainly the intermolecular interaction force, the lithium bond, which is different from that (covalent bond or ionic bond) of the general superatom. Third, the interaction between the outer‐shell nucleus and the excess electron cloud is mainly the anti‐excess‐electron hydrogen bond. Fourth, the special superatom exhibits the new aromaticity (NICS = ?8.37 ppm at the center of the regular triangular F ring), which is the aromaticity found in the cluster of the intermolecular interaction. This is the new knowledge of the aromaticity. Fifth, the large polarizability of the superatom is revealed. Further, the vertical ionization energy (VIE) of the superatom is low, 4.51 eV (<5.210 eV of the alkaline–earth metal Ba) so that it may be viewed as a superalkaline–earth metal atom. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
Diffusion Monte Carlo (DMC) simulations were used to calculate the binding energies for hydrogen molecules adsorbed on the lithium metal–organic complex C4H3Li. The calculations use all‐electron DMC techniques where every electron is explicitly included in the simulation. Also we have systematically studied it using density functional theory (DFT) methods, revealing that each C4H3Li can hold up to four H2 molecules and the adsorption distance is about 2.2 Å. The DMC binding energies are in the range of 0.055–0.143 eV and are compared with those obtained with DFT using various exchange‐correlation functionals, with values ranging from 0.029 to 0.504 eV. These results indicate that caution is required applying DFT methods to weakly bound systems such as hydrogen storage materials based on lithium‐doped metal–organic frameworks. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Closely positioned donor–acceptor pairs facilitate electron‐ and energy‐transfer events, relevant to light energy conversion. Here, a triad system TPACor‐C60 , possessing a free‐base corrole as central unit that linked the energy donor triphenylamine ( TPA ) at the meso position and an electron acceptor fullerene (C60) at the β‐pyrrole position was newly synthesized, as were the component dyads TPA‐Cor and Cor‐C60 . Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady‐state fluorescence studies showed efficient energy transfer from 1 TPA* to the corrole and subsequent electron transfer from 1corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron‐transfer products, the corrole radical cation ( Cor?+ in Cor‐C60 and TPA‐Cor?+ in TPACor‐C60 ) and fullerene radical anion (C60??), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS, was found to be about 1011 s?1, suggesting the occurrence of an ultrafast charge‐separation process. Interestingly, although an order of magnitude slower than kCS, the rate of charge recombination, kCR, was also found to be rapid (kCR≈1010 s?1), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge‐separated species relaxed directly to the ground state in polar solvents while in toluene, formation of 3corrole* was observed, thus implying that the energy of the charge‐separated state in a nonpolar solvent is higher than the energy of 3corrole* being about 1.52 eV. That is, ultrafast formation of a high‐energy charge‐separated state in toluene has been achieved in these closely spaced corrole–fullerene donor–acceptor conjugates.  相似文献   

15.
We studied the interaction between H, Li, Na, and K with one and two C60 molecules using unrestricted Hartree–Fock (UHF) methods. We investigated the effects of distances between the doping atoms and the C60 clusters, total charges, interaction energies, stabilities, HOMO‐LUMO energy differences, charge distribution, and potential energy surfaces. The effect of each doping atom was analyzed and potential technological applications discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

16.
《印度化学会志》2023,100(3):100940
Dichlorosilane is a flammable and poisonous gas which is very toxic when inhaled. When handling this gas, extreme precautions must be taken to prevent exposure and so therefore there is need to develop a more sensitive and affordable sensor to detect and measure the concentration of gas in the environment in case of unintentional release of the gas into the air. Overtime, structured materials have been used in the adsorption of target gas. Herein, the detection of dichlorosilane (H2SiCl2) gas by transition metals (X = Cr, Fe, Ni, Ti, and Zn) anchored fullerene is studied using the density functional theory (DFT) computation at theωB97X-D/gen/6-311++G(d,p)/LanL2DZ level of theory. From the electronic properties, large energy gap signifies lower electrical conductivity and sensitivity. The result showed an increase in the energy gap on adsorption of the gas on nanocages except for N1 and T1 where the energy gap was lesser than that of the nanocages. Calculations shows among the five studied surfaces, C23–Ti surface emerged with the highest adsorption energy value of ?2.231 eV and corresponding energy gap value of 5.200 eV. Also, the decreasing trend of adsorption energies: H2Cl2SiC23Ti (T1), (?2.231) > H2SiCl2C23Ni (N1), (?2.095) > H2SiCl2C23Zn (Z1) (?2.068) > H2SiCl2C23Cr (C1) (?1.796) > H2SiCl2C23Fe (F1) (?1.742) was observed. High negative value of adsorption energy, the lesser the recovery time. H2Cl2SiC23Ti (T1) complex with high negative value of adsorption energy has a lesser recovery time exhibits better sensing attributes. The C23–Ti surface is relatively a better candidate in the adsorption and, hence, confirmed as suitable nanosensor material for the detection and adsorption of toxic dichlorosilane (H2SiCl2) gas molecule.  相似文献   

17.
铜族金属与完整及氮掺杂石墨烯的相互作用   总被引:1,自引:0,他引:1  
基于广义梯度密度泛函理论和周期平板模型,研究了铜族金属单原子和双原子簇与完整及氮掺杂石墨烯的结合情况.结果表明,氮掺杂后石墨烯的电子结构特性由半金属性变为金属性;铜族金属在完整及石墨型氮掺杂石墨烯上的吸附较弱,结合能约为0.5eV,而在吡啶型氮掺杂和吡咯型氮掺杂石墨烯上有较强的化学吸附,结合能一般大于1eV;吡咯型氮掺杂后的构型不稳定,金属原子及簇与包含该结构的石墨烯衬底作用时会使其向吡啶型氮掺杂转变,并最终得到基于吡啶型氮掺杂的稳定吸附构型.Mulliken电荷布居分析显示,吸附在吡啶型氮掺杂石墨烯上的金属单原子与金属双原子簇带电性质相反.态密度及轨道分析表明,Cu与吡啶型氮掺杂石墨烯空位处留有悬挂键的三个原子成键,而Au与其中两个C原子成键.  相似文献   

18.
The three-dimensional EHMO crystal orbital calculations for crystalline C60, Ca3C60, and Ca5C60 are reported. The ground states of both undoped solid C60 and partially doped Ca3C60 are found to be insulating with an indirect energy gap of 1.2 and 0.5 eV, respectively. In contrast, Ca5C60 forms a metallic conducting phase with a set of three half-filled bands crossing the Fermi level, which is found to be located close to a peak of the density of state. The character of crystal orbitals near the Fermi level for both Ca3C60 and Ca5C60 is completely carbonlike. In both cases, the Ca atoms are almost fully ionized and C60 molecules form a stable negative charge state with six to 10 additional electrons. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
《Comptes Rendus Chimie》2017,20(7):758-764
It has been previously indicated that pristine graphene cannot detect NO2 gas. Nanographene is a segment of graphene whose end atoms are saturated with hydrogen atoms and its properties are different from those of graphene. Herein, we investigated the reactivity, electronic sensitivity, and structural properties of hexa-peri-hexabenzocoronene (HBC) nanographene toward NO2 gas using density functional theory calculations. It was found that the central and peripheral rings of HBC are aromatic but the middle rings are non-aromatic, following Clar's sextet rule of aromaticity. The NO2 molecule prefers to be adsorbed on the central ring with a nitro configuration, releasing an energy of about 13.2 kJ/mol. The NO2 molecule significantly stabilizes the LUMO level of the HBC, thereby reducing the HOMO–LUMO energy gap from 3.60 to 1.35 eV. This indicates that the HBC is converted from a semiconductor to a semimetal. It was shown that the adsorption of NO2 gas by HBC can produce an electrical signal selectively in the presence of O2, H2, N2, CO2, and H2O gases. A short recovery time about 1.9 ns is predicted and the effect of density functional is investigated.  相似文献   

20.
A high potential donor–acceptor dyad composed of zinc porphyrin bearing three meso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号