首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Chemical flooding in the petroleum industry has a larger scale of oil recovery efficiency than water flooding. On the other hand, it is far more technical, costly, and risky. Numerical reservoir simulation can be employed to conduct mechanism study, feasibility evaluation, pilot plan optimization, and performance prediction for chemical flooding to improve recovery efficiency and reduce operational costs. In this article, we study numerical simulation of chemical flooding such as alkaline, surfactant, polymer, and foam (ASP+foam) flooding. The main displacement mechanisms in this type of flooding are interfacial tension lowering, capillary desaturation, chemical synergetic effects, and mobility control. The model of chemical flooding involves such physicochemical phenomena as dispersion, diffusion, adsorption, chemical reactions, and in situ generation of surfactant from acidic crude oil. The numerical simulator is based on a sequential solution approach that solves both pressure and compositions implicitly, and is applied to three experiments, a chemical flow without mass transfer between phases, a laboratory sandstone core, and an ASP+foam displacement problem with mass transfer, and to a real oilfield. A comparison with UTCHEM is also performed. These applications and comparison indicate that this numerical simulator is practical, efficient, and accurate for simulating complex chemical flooding processes.   相似文献   

2.
Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore volumes of injected fluid were determined from analysis of continuously recorded images during the experiments. We observed a clear bypassing of displacing fluid which results in premature breakthrough of injected fluid due to the shale streaks. Moreover, the results showed a decrease of oil recovery when shales’ orientation, length, spacing, distance of the shale from production well, and density of shales increased. In contrast, an increase of shale discontinuity or distance of the shale streak from the injection well increased oil recovery. The obtained experimental data have also been used for developing and validating a numerical model where good matching performance has been observed between our experimental observations and simulation results. Finally, the role of connate water saturation during polymer flooding in systems containing flow barriers has been illustrated using pore level visualizations. The microscopic observations confirmed that besides the effect of shale streaks as heterogeneity in porous medium, when connate water is present, the trapped water demonstrates another source of disturbance and causes additional perturbations to the displacement interface leading to more irregular fingering patterns especially behind the shale streaks and also causes a reduction of ultimate oil recovery. This study reveals the application of glass micromodel experiments for studying the effects of barriers on oil recovery and flow patterns during EOR processes and also may provide a set of benchmark data for recovery of oil by immiscible polymer flood around discontinuous shales.  相似文献   

3.
Liu  Zheyu  Cheng  Hongjie  Li  Yanyue  Li  Yiqiang  Chen  Xin  Zhuang  Yongtao 《Transport in Porous Media》2019,126(2):317-335

Surfactant/polymer (SP) floods have significant potentials to recover remaining oil after water flooding. Their efficiency can be maximized by fully utilizing synergistic effect of polymer and surfactant. Various components adsorbed on the rock matrix due to chromatographic separation can significantly weaken the synergistic effect. Due to scale and dimensional problems, it is hard to investigate chromatographic separation among various components using one-dimensional natural cores. This study compared the adsorption difference between artificial and natural cores and developed a three-dimensional artificial core model of a 1/4 5-spot configuration to simulate oil recovery in multilayered reservoirs with high, middle and low permeability for each layer. Sampling wells were established to monitor pressures, and effluent fluids were acquired to measure interfacial tension (IFT) and viscosity. Then, distances of synergy of polymer and surfactant in three layers were evaluated. Meanwhile, electrodes were set in the model to measure oil saturation variation with resistance changes at different locations. Through comparison with IFT values, the contribution of improved swept volume and oil displacement efficiency to oil recovery during SP flooding could be known. Results showed that injected 0.65 PV of SP could improve oil recovery by 21.56% when water cut reached 95% after water flooding. The retention ratio of polymer viscosity was kept 55.3% at the outlet, but IFT was only 2 mN/m within the 3/10 injector–producer spacing during SP injection. Although subsequent water flooding could result in surfactant desorption and the IFT became 10?2?mN/m within the 3/10 injector–producer spacing, the IFT turned to 2?mN/m at the half of the model. The enhanced displacement efficiency by reducing IFT only worked within three-tenth location of the model in the high permeability layer, while the enlarged swept volume contributed much in the other areas.

  相似文献   

4.
再利用地下滞留聚合物是聚合物驱之后进一步提高原油采收率的新途径。基于油水两相流网络模拟模型,综合考虑聚合物渗流机理建立起聚合物驱微观模拟模型。用微观数值模拟手段研究了地下滞留聚合物分布规律及影响因素,为有效地开采聚合物驱后剩余油、合理利用滞留地下聚合物提供必要的依据。模拟结果表明,由于吸附和捕集作用将引起大量聚合物滞留在孔喉中,滞留聚合物占注入聚合物的61.7%。总体上看,大孔喉中聚合物滞留量较大,但滞留聚合物浓度较小。孔喉半径和形状因子为聚合物滞留的主要影响因素,孔喉滞留聚合物浓度与孔喉半径和形状因子平方根的乘积成反比。  相似文献   

5.
Performance of a polymer flood process requires the knowledge of rheological behavior of the polymer solution and reservoir properties such as rock wettability. To provide a better understanding of effects of polymer chemistry and wettability on the performance of a polymer flood process, a comprehensive experimental study was conducted using a two-dimensional glass micromodel. A series of water and polymer flood processes were carried out at different polymer molecular weights, degrees of polymer hydrolysis, and polymer concentrations in both water-wet and oil-wet systems. Image processing technique was applied to analyze and compare microscopic and macroscopic displacement behaviors of polymer solution in each experiment. From micro-scale observations, the configuration of connate water film, polymer solution trapping, flow of continuous and discontinuous strings of polymer solution, piston-type displacement of oil, snap-off of polymer solution, distorted flow of polymer solution, emulsion formation, and microscopic pore-to-pore sweep of oil phase were observed and analyzed in the strongly oil-wet and water-wet media. Rheological experiments showed that a higher polymer molecular weight, degree of hydrolysis, and concentration result in a higher apparent viscosity for polymer solution and lower oil–polymer viscosity ratio. It is also shown that these parameters have different impacts on the oil recovery in different wettabilities. Moreover, a water-wet medium generally had higher recovery in contrast with an oil-wet medium. This experimental study illustrates the successful application of glass micromodel techniques for studying enhanced oil recovery (EOR) processes in five-spot pattern and provides a useful reference for understanding the displacement behaviors in a typical polymer flood process.  相似文献   

6.
A polymer solution with a transient network structure due to the entanglement of long chain molecules exhibits a viscoelastic behavior when it flows through a tortuous and diverging/converging channel in porous media. A constitutive equation is first developed to represent the viscoelastic behavior of polymer solutions in this article. Then a 3D viscoelastic polymer flooding model is established to examine the effect of elasticity of polymers on EOR (enhanced oil recovery). The model is validated in comparison with laboratorial coring data. The simulated results show that the oil recovery of viscoelastic polymer flooding can be enhanced by larger displacement efficiency due to its microscopic roles. In the meanwhile, the injection pressure required increases correspondingly if the elastic effect is significant. Relaxation time as a major characteristic parameter of viscoelastic polymer plays a decisive role, and therefore the HPAM (partially hydrolyzed polyacrylamide) with evident elastic property is recommended in chemical flooding.  相似文献   

7.
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed.With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10−5 to 100 and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.  相似文献   

8.
This study concerns with the microscopic and macroscopic fluid distribution and flow behavior during water alternating solvent (WAS) injection process to heavy oil using micromodel generated from thin section of a real rock which has rarely attended in the available literature. In this study, a one-quarter five-spot glass micromodel was deployed to examine the effect of flow media topology on microscopic displacements as well as macroscopic efficiency of WAS process. The micromodel was initially saturated with the heavy oil, and then the hydrocarbon solvent and water were injected alternately into it. The observations confirmed that WAS injection scheme is an effective method for the recovery of the significant amount of residual oil. Using solvent as the leading batch in WAS scheme can really improve the oil recovery by increasing the amount of microscopic sweep efficiency in flow paths, where the molecular diffusion in solvent–heavy oil system occurs. Presence of connate water in WAS scheme can improve the recovery efficiency especially at higher water saturations. Heterogeneity of the medium caused the water to be distributed better in the medium, but the amount of residual oil in the flow area is going to be increased. Small precipitates of asphaltene particles due to solvent injection and localized entrapment of the oil due to heterogeneity effects, water blockage, and deadend pores were observed mainly in this process. The results of this study reveals the pore scale events in WAS injection process and will be helpful for developing reliable simulation models.  相似文献   

9.
The microscopic oil displacement mechanism in viscoelastic polymer flooding is theoretically analyzed with mechanical method. The effects of viscoelasticity of polymer solution on such three kinds of residual oil as in pore throat, in sudden expansion pore path, and in dead end are analyzed. Results show that the critical radius of mobile residual oil for viscoelastic polymer solution is larger than that for viscous polymer solution, which makes the oil that is immobile in viscous polymer flooding displaced under the condition of viscoelastic polymer solution. The viscous polymer solution hardly displaces the oil in dead ends. However, when the effect of viscoelasticity is considered, the residual oil in sudden expansion pore paths and dead ends can be partly displaced. A dimensionless parameter is suggested to denote the relative dominance of gravity and capillary pressure. The larger the dimensionless parameter, the more accurate the increment expressions.  相似文献   

10.
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding. Above the scale of representative elementary volume (REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures, but the studies alike are rarely conducted at the pore-scale, at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations. In this paper, dissipative particle dynamics (DPD), one of mesoscopic fluid particle methods, is introduced to simulate the pore-scale flow in chemical flooding processes. The theoretical background, mathematical formulation and numerical approach of DPD are presented. The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation, and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively. The selected parameters of those simulations are given in details. These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.  相似文献   

11.

Low-tension gas (LTG) flooding is a promising chemical enhanced oil recovery technique in tight sandstone and carbonate reservoirs where polymer may not be used because of plugging and degradation issues. This process has been the subject of many experimental studies. However, theoretical investigation of the LTG process is scarce in the literature. Hence, in this study, we lay out a displacement theory for LTG flooding, with a constant mobility reduction factor, which lays the groundwork for further theoretical studies. The proposed model is based on the three-phase flow of water, oil, and gas in the presence of a water-soluble surfactant component. Under the developed model, we study the effect of MRF and oil viscosity on the flow dynamics and oil recovery. Moreover, we explain experimental observations on early gas breakthrough that occurs during LTG core floods even in the presence of a stable foam drive.

  相似文献   

12.
非牛顿流体在非均质油藏渗流压力场实验   总被引:5,自引:0,他引:5  
在非均质油藏模型上进行非牛顿流体流动物理模拟实验,对比研究水驱、聚合物驱和交联聚合物对提高石油采收率的影响.通过布置高精度的压差传感器测量不同驱替过程模型中的渗流压力场的动态变化,成胶后的交联聚合物封堵了高渗条区,改变了油藏内流体流动方向,驱替出低渗区内油,提高了采收率.  相似文献   

13.
基于三维网络模型的水驱油微观渗流机理研究   总被引:11,自引:0,他引:11  
利用逾渗网络模型在微观水平进行随机模拟来研究水驱油的微观渗流规律,通过模型计 算结果与油水稳态相对渗透率驱替实验结果对比验证了网络模拟的有效性. 在此基础上,讨 论了在不同润湿条件下、水驱不同阶段的剩余油微观分布规律. 将剩余油分布形态归纳为4 种状态:孤粒/孤滴状、斑块状、网络状和油水混合状态. 研究表明,网络状剩余油的块数 较少,但所占体积比例较大. 随着剩余油饱和度的降低,最大网络状油所占孔隙数减少,剩 余油饱和度在40{\%}$\sim$50{\%}附近开始以较快速度减少. 润湿性不仅影响驱油效率,也影响剩余油分布形态. 在驱替过程中,剩余油分布总的变化趋势是逐渐趋于分散.  相似文献   

14.
We present results of high-pressure micromodel visualizations of pore-scale fluid distribution and displacement mechanisms during the recovery of residual oil by near-miscible hydrocarbon gas and SWAG (simultaneous water and gas) injection under conditions of very low gas–oil IFT (interfacial tension), negligible gravity forces and water-wet porous medium. We demonstrate that a significant amount of residual oil left behind after waterflooding can be recovered by both near-miscible gas and SWAG injection. In particular, we show that in both processes, the recovery of the contacted residual oil continues behind the main gas front and ultimately all of the oil that can be contacted by the gas will be recovered. This oil is recovered by a microscopic mechanism, which is strongly linked to the low IFT between the oil and gas and to the perfect spreading of the oil over water, both of which occur as the critical point of the gas–oil system is approached. Ultimate oil recovery by near-miscible SWAG injection was as high as near-miscible gas injection with SWAG injection using much less gas compared to gas injection. Comparison of the results of SWAG experiments with two different gas fractional flow values (SWAG ratio) of 0.5 and 0.2 shows that fractional flow of the near-miscible gas injected simultaneously with water is not a crucial factor for ultimate oil recovery. This makes SWAG injection an attractive IOR (improved oil recovery) process especially for reservoirs, where continuous and high-rate gas injection is not possible (e.g. due to supply constraint).  相似文献   

15.
As gas flooding becomes a more viable means of enhanced oil recovery, it is important to identify and understand the pore-scale flow mechanisms, both for the development of improved gas flooding applications and for the predicting phase mobilisation under secondary and tertiary gas flooding. The purpose of this study was to visually investigate the pore-level mechanisms of oil recovery by near-miscible secondary and tertiary gas floods. High-pressure glass micromodels and model fluids representing a near-miscible fluid system were used for the flow experiments. A new pore-scale recovery mechanism was identified which significantly contributed to oil recovery through enhanced flow and cross-flow between the bypassed pores and the injected gas. This mechanism is strongly related to a very low gas/oil interfacial tension (IFT), perfect wetting conditions and simultaneous flow of gas and oil in the same pore, all of which occur as the gas/oil critical point is approached. The results of this study helps us to better understand the pore-scale mechanisms of oil recovery in very low-IFT (near-miscible) systems. In particular we show that in near-miscible gas floods, behind the main gas front, the recovery of the oil continues by cross-flow from the bypassed pores into the main flow stream and as a result almost all of the oil, which has been contacted by the gas, could be recovered. Our observations in high-pressure micromodel experiments have demonstrated that this mechanism can only occur in near-miscible processes (as opposed to immiscible and completely miscible processes), which makes oil displacement by near-miscible gas floods a very effective process.  相似文献   

16.
It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in the pores and throats was measured with analysis of continuously provided pictures during the experiments. Sessile drop method was used for measuring the contact angles of the glass surface at different states of wettability after coating by heavy oil, distilled water, dispersed silica nanoparticles in water (DSNW), polyacrylamide solution, and DSNP solution. The results showed that the silica nanoparticles caused enhanced oil recovery during polymer flooding by a factor of 10%. The distribution of DSNP solution during flooding tests in pores and throats showed strong water-wetting of the medium after flooding with this solution. The results of sessile drop experiments showed that coating with heavy oil, could make an oil-wet surface. Coating with distilled water and polymer solution could partially alter the wettability of surface to water-wet and coating with DSNW and DSNP could make a strongly water-wet surface.  相似文献   

17.
认识双重多孔介质中油水两相微观渗流机制是回答形成什么类型的裂隙网络可提高油藏采收率的关键. 微裂隙的分布可以提高多孔介质的绝对渗透率,但对于基质孔隙中的流体介质,微裂隙的存在会引起多孔介质中局部流体压力和流场的变化,导致局部流动以微裂隙流动为主,甚至出现窜流现象,降低驱油效率. 本文基于孔与裂隙双重网络模型,在网络进口设定两条平行等长且具有一定间隔的微裂隙,分析微裂隙的相对间隔(微裂隙之间距离/喉道长度)和微裂隙相对长度(微裂隙长度/喉道长度)对于微观渗流特征的影响. 结果表明:随微裂隙相对长度的增加,出现驱油效率逐渐降低,相对渗透率曲线中的油水共渗区水饱和度和等渗点增加,油水两相的共渗范围减小等现象;随着微裂隙之间相对间隔增大,周围越来越多的基质孔穴间的压力差减小,在毛管压力的限制下,驱替相绕过这些区域,而导致水窜现象.   相似文献   

18.
The flow properties of complex fluids through porous media give rise to multiphase flow displacement mechanisms that operate at different scales, from pore-level to Darcy scale. Experiments have shown that injection of oil-in-water emulsions can be used as an effective enhanced-oil recovery (EOR) method, leading to substantial increase in the volume of oil recovered. Pore-scale flow visualization as well as core flooding results available in the literature have demonstrated that the enhanced recovery factor is regulated by the capillary number of the flow. However, the mechanisms by which additional oil is displaced during emulsion injection are still not clear. In this work, we carried out two different experiments to evaluate the effect of emulsion flooding both at pore and macro scales. Visualization of the flow through sand packed between transparent plexiglass parallel plates shows that emulsion flooding improves the pore-level displacement efficiency, leading to lower residual oil saturation. Oil recovery results during emulsion flooding in tertiary mode (after waterflooding) in parallel sandstone cores with very different absolute permeability values prove that emulsion flooding also leads to enhancement of conformance or volumetric sweep efficiency. Combined, the results presented here show that injection of emulsion offers multiscale mechanisms resulting from capillary-driven mobility control.  相似文献   

19.
Enhanced oil recovery (EOR) by alkaline flooding for conventional oils has been extensively studied. For heavy oils, investigations are very limited due to the unfavorable mobility ratio between the water and oil phases. In this study, the displacement mechanisms of alkaline flooding for heavy oil EOR are investigated by conducting flood tests in a micromodel. Two different displacement mechanisms are observed for enhancing heavy oil recovery. One is in situ water-in-oil (W/O) emulsion formation and partial wettability alteration. The W/O emulsion formed during the injection of alkaline solution plugs high permeability water channels, and pore walls are altered to become partially oil-wetted, leading to an improvement in sweep efficiency and high tertiary oil recovery. The other mechanism is the formation of an oil-in-water (O/W) emulsion. Heavy oil is dispersed into the water phase by injecting an alkaline solution containing a very dilute surfactant. The oil is then entrained in the water phase and flows out of the model with the water phase.  相似文献   

20.
Stone’s model for gravity segregation in gas improved oil recovery (IOR) indicates the distance that injected gas and water travel together before the segregation being completed (length of complete segregation). This model is very useful for co-injection of water and gas into horizontal depleted reservoirs. A proof by Rossen and van Duijn showed that Stone’s model applies to steady-state gas–liquid flow, and also foam flow, in horizontal reservoirs as long as the standard assumptions of fractional flow theory (incompressible flow, Newtonian mobilities, local equilibrium) are applied. However, until now, there has been no analytical study on the length of segregation when co-injection of water and gas occurs in tilted reservoirs. In this article, in order to extent the validity of Stone’s model to tilted reservoirs, governing equations of fluids displacement based on fractional flow theory are solved by the method of characteristics, MOC. The results are then compared to Stone’s model and to the results of a three-dimensional finite-difference compositional reservoir simulator. This study shows that Stone’s model should be corrected for tilted reservoirs and that the presented math proof can model gravity segregation in gas IOR of tilted reservoirs, appropriately. The effect of co-injecting of water and gas into tilted reservoirs on recovery efficiency is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号