首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of a recently developed lamp-based fluorescence detector for the analysis of underivatised proteins by capillary electrophoresis (CE) was investigated. Fluorescence detection (Flu) was achieved using optical light guides to deliver excitation light from a Xenon–Mercury lamp to the capillary detection window and to collect fluorescence emission and lead it to a photomultiplier. The performance of the detector was evaluated by monitoring the native fluorescence of the amino acid tryptophan and the proteins α-chymotrypsinogen A, carbonic anhydrase II, lysozyme and trypsinogen upon excitation at 280 nm. The test compounds were analysed using background electrolytes (BGEs) of sodium phosphate at pH 3.0 and 11.3. The results were compared to experiments of CE with UV absorbance detection. For tryptophan, a linear fluorescence response was obtained with a dynamic range of over 4 orders of magnitude, and a limit of detection (LOD) of 6.7 nM. This LOD was a factor of 200 more favourable than UV detection at 280 nm, and a factor of 20 better than detection at low-UV wavelengths. All tested proteins showed linear fluorescence responses up to 250 μg/mL. LODs were typically in the 10–20 nM range. These LODs were a factor of 25 lower than for UV detection at 280 nm, and comparable to UV detection at low-UV wavelengths. Overall, Flu yields much more stable baselines, especially with a BGE of high pH. The applicability of CE–Flu is demonstrated by the analysis of a degraded protein mixture, and of an expired formulation of the protein drug human growth hormone, indicating that protein degradation products can be selectively detected.  相似文献   

2.
Homogenous selective assay of albumin (ALB) in clinical sera was tested with 1-anilinonaphthalene-8-sulphonate (ANS) as Förster-resonance-energy-transfer (FRET) acceptor of tryptophan residues and biosensor of ALB. Between the excitation at 280 and 350 nm, the ratio of the fluorescence at 470 nm of free ANS in ethanol was about 1.9 while that of the complexes of ALB and ANS was about 3.9, supporting FRET in complexes of ANS and ALB. ANS below 1.0 mM saturated one site of ALB with Kd of about 0.13 μM in 20 mM sodium phosphate buffer at pH 7.0. For selective assay of ALB, 0.30 μM ANS was used to quantify fluorescence of the complexes at 470 nm under the excitation at 280 nm. ALB from 1.8 to 25 nM was quantified, whose lower limit was below 1% than that by bromocresol green assay while one-third than that by immunoturbidimetric assay. Globular proteins at comparable levels gave negligible signals. This new method showed reasonable resistance to other interfering substances in clinical sera. Quantities of ALB in clinical sera by this method were consistent with those by bromocresol green assay and immunoturbidimetric assay. Hence, homogenous assay of ALB with ANS as FRET biosensor was effective.  相似文献   

3.
《Analytica chimica acta》2004,514(2):259-264
A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml−1 and a limit of detection of 0.18 ng ml−1. The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations.  相似文献   

4.
5.
In this work, we utilized polyethyleneimine-capped silver nanoclusters (PEI-Ag nanoclusters) to develop a new fluorometric method for the determination of hydrogen peroxide and glucose with high sensitivity. The PEI-Ag nanoclusters have an average size of 2 nm and show a blue emission at 455 nm. The photostable properties of the PEI-Ag nanoclusters were examined. The fluorescence of the PEI-Ag nanoclusters could be particularly quenched by H2O2. The oxidization of glucose by glucose oxidase coupled with the fluorescence quenching of PEI-Ag nanoclusters by H2O2 can be used to detect glucose. Under optimum conditions, the fluorescence intensity quenched linearly in the range of 500 nM–100 μM with high sensitivity. The detection limit for H2O2 was 400 nM. And a linear correlation was established between fluorescence intensity (F0 − F) and concentration of glucose in the range of 1.0 × 10−6 to 1.0 × 10−5 M and 1.0 × 10−5 to 1.0 × 10−3 M with a detection limit of 8.0 × 10−7 M. The method was used for the detection of glucose in human serum samples with satisfactory results. Furthermore, the mechanism of sensitive fluorescence quenching response of Ag nanoclusters to glucose and H2O2 has been discussed.  相似文献   

6.
High-performance liquid chromatography (HPLC) and fluorescence derivatization were applied for a nanogram-level N-nitrosodimethylamine (NDMA) analysis of water samples. For the analysis of N-nitrosodimethylamine, samples were first denitrosated by a mixed solution of hydrobromic acid and acetic acid to produce dimethylamine, which was derivatized with dansyl chloride for HPLC fluorescence detection. Fluorescence detection was optimized with excitation and emission wavelengths of 340 and 530 nm, respectively. pH adjustment after denitrosation was necessary to maximize fluorescence intensity with pHs in the range of 9-12. A dansyl chloride concentration of 500 mg l−1 was found to be optimal for measuring a fluorescence signal. An instrumental detection limit of 0.1 ng of NDMA was possible with fluorescence derivatization. The NDMA in water samples was extracted by continuous solid-phase extraction using Ambersorb 572. Although the determination of NDMA was variable at lower concentrations (less than 200 ng l−1), it was observed that the NDMA detection limit with this method could be lowered to a concentration of 10 ng l−1. Another benefit of this method can be found in its selectivity for NDMA. Unlike gas chromatographic (GC) methods, this method generates a distinct peak for NDMA without interference even in the complex matrix of wastewater effluents. The HPLC with fluorescence derivatization method may be applicable for determining NDMA in water and wastewater samples for various research purposes and for screening environmental samples.  相似文献   

7.
Liqing Wang  Pingang He 《Talanta》2009,79(3):557-154
In this protocol, a fluorescent aptasensor based on magnetic separation for simultaneous detection thrombin and lysozyme was proposed. Firstly, one of the anti-thrombin aptamer and the anti-lysozyme aptamer were individually immobilized onto magnetic nanoparticles, acting as the protein captor. The other anti-thrombin aptamer was labeled with rhodamine B and the anti-lysozyme aptamer was labeled with fluorescein, employing as the protein report. By applying the sandwich detection strategy, the fluorescence response at 515 nm and 578 nm were respectively corresponding to lysozyme and thrombin with high selectivity and sensitivities. The fluorescence intensity was individually linear with the concentration of thrombin and lysozyme in the range of 0.13-4 nM and 0.56-12.3 nM, and the detection limits were 0.06 nM of thrombin and 0.2 nM of lysozyme, respectively. The preliminary study on simultaneous detection of thrombin and lysozyme in real plasma samples was also performed. It shows that the proposed approach has the good character for simultaneous multiple protein detection.  相似文献   

8.
A microchip capillary electrophoresis system with highly sensitive fluorescence detection is reported. The system was successfully constructed using an inverted fluorescence microscope, a highly sensitive photon counter, a photomultiplier tube (PMT) and a capillary electrophoresis microchip. This system can be applied to the fluorescence detection with various wavelengths (300-600 nm). Different fluorescence reagents require different excitation wavelengths. The wavelengths of UV light (300-385 nm), blue light (450-480 nm) and green light (530-550 nm) are employed to excite Titan yellow, fluorescence-5-isothiocyanate (FITC) and Rhodamine 6G, respectively. The detection limit (S/N = 3) of FITC is 7 × 10−10 M, which is 2-3 orders of magnitude lower than that obtained with the lamp-based fluorescence and PMT detection system and approaches the data gained by the laser-induced fluorescence detection. The linear relationship is excellent within the range of concentration 1.3 × 10−9 to 6.5 × 10−8 M FITC. It offers a new method to widen the application of the lamp-based fluorescence detection.  相似文献   

9.
A novel assay of chromium(III) ion based on upconversion fluorescence resonance energy transfer was designed and established. Lysine-capped NaYF4:Yb/Er upconversion nanoparticles (UCNPs) and dimercaptosuccinic acid-capped gold nanoparticles (AuNPs) were used as the energy donor and acceptor, respectively. They were bound together via electrostatic interaction, resulting in the quenching of the fluorescence of UCNPs by AuNPs. Chromium(III) ions can specifically and strongly interact with dimercaptosuccinic acid that was modified on the surface of AuNPs, leading to the separation of AuNPs from UCNPs and the recovery of fluorescence of UCNPs. The fluorescence recovery of UCNPs showed a good linear response to Cr3+ concentration in the range of 2–500 nM with a detection limit of 0.8 nM. This method was further applied to determine the levels of Cr3+ in urine. Compared with other fluorescence methods, current method displayed very high sensitivity and signal-to-noise ratio because of the excitation of near-infrared that can eliminate autofluorescence, providing a promising examination of biological samples for the diagnostic purposes.  相似文献   

10.
A BODIPY-based fluorescent derivatization reagent with a hydrazine moiety, 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide), has been designed for aldehyde labeling. An increased fluorescence quantum yield was observed from 0.38 to 0.94 in acetonitrile when it reacted with aldehydes. Twelve aliphatic aldehydes from formaldehyde to lauraldehyde were used to evaluate the analytical potential of this reagent by high performance liquid chromatography (HPLC) on C18 column with fluorescence detection. The derivatization reaction of BODIPY-aminozide with aldehydes proceeded at 60 °C for 30 min to form stable corresponding BODIPY hydrazone derivatives in the presence of phosphoric acid as a catalyst. The maximum excitation (495 nm) and emission (505 nm) wavelengths were almost the same for all the aldehyde derivatives. A baseline separation of all the 12 aliphatic aldehydes (except formaldehyde and acetaldehyde) is achieved in 20 min with acetonitrile–tetrahydrofuran (THF)–water as mobile phase. The detection limits were obtained in the range from 0.43 to 0.69 nM (signal-to-noise = 3), which are better than or comparable with those obtained by the existing methods based on aldehyde labeling. This reagent has been applied to the precolumn derivatization followed with HPLC determination of trace aliphatic aldehydes in human serum samples without complex pretreatment or enrichment method.  相似文献   

11.
The objective of this study was to investigate intrinsic fluorophores of thick albumen and egg yolk in order to assess egg freshness during storage at a temperature of 12.2 °C and 87% relative humidity (RH). A total of 126 intact brown-shelled eggs of the same flock (29 weeks of age) were stored for 1, 6, 8, 12, 15, 20, 22, 26, 29, 33, 40, 47 and 55 days. The emission fluorescence spectra of aromatic amino acids and nucleic acids (AAA + NA) (excitation: 250 nm; emission: 280-450 nm), fluorescent Maillard reaction products (FMRP) (excitation: 360 nm; emission: 380-580 nm) and the excitation spectra of vitamin A (emission: 410 nm; excitation: 270-350 nm) were scanned on thick albumen and egg yolk. Among the intrinsic fluorophores, only the principal component analysis (PCA) applied on the vitamin A fluorescence spectra allowed a good identification of eggs as a function of their storage time. Factorial discriminant analysis (FDA) was then applied on the first five principal components (PCs) of the PCA applied on each spectral data set. Regarding AAA + NA recorded on thick albumen, correct classification of 69.4% and 63.9% was observed for the calibration and validation sets, respectively. Quite similar results were obtained on AAA + NA scanned on egg yolks. The best results were obtained with vitamin A fluorescence spectra since 97.7% and 85.7% of the calibration and validation sets was obtained, respectively. These results showed that vitamin A fluorescence spectra provide useful fingerprints, mainly allow the identification of eggs during storage and could be considered as a powerful intrinsic probe for the evaluation of egg freshness.  相似文献   

12.
In this report aimed on further development of a high-sensitivity capillary gel electrophoresis (CGE) method for analysis of DNA fragments, we firstly explored online transient isotachophoresis (tITP) preconcentration combined with fluorescence detection (FD). The fluorescence signal (excitation: 488 nm; emission: 590 nm) was generated using the intercalating dye of ethidium bromide (EB). It was found when the leading electrolyte (LE) was injected behind the sample zone, such a special tITP mode has significant advantages to solve the bubble formation issue and to improve the analytical performance stability. Two standard DNA samples, a 50 bp DNA step ladder and the φX174/HaeIII digest, were used to evaluate the qualitative and quantitative abilities of the tITP-FD approach. A highly diluted sample (10,000-fold in the water, e.g. the φX174/HaeIII digest diluted from 500 μg/ml to the 50 ng/ml level) was enriched and detected; the LOD was down to 0.09 ng/ml for the 72 bp fragment, apparently improved more than 1000-fold in comparison with UV detection. Although the RSD of peak areas (n = 3) was around 15.5% for the sample was electrokinetically injected, good linearity of peak area response showed that the proposed method is suitable for quantitative analysis.  相似文献   

13.
A reagent tablet for determination of fluoride ion has been prepared using ethylenediamine-N,N,N′,N′-tetraacetate complex of zirconium (Zr-EDTA), 3-hydroxy-2′-flavone (FS) and an appropriate pH buffer. Dissolving of the tablet into water exhibits an intense blue fluorescence (λmax = 460 nm) upon excitation at 377 nm and the fluorescence intensity decreases with the presence of fluoride ion. Hence, a simple fluorescent detection procedure for fluoride ion in aqueous media was successfully constructed with this tablet. The principle of this detection system is the ligand exchange reaction of FS bound to Zr-EDTA with fluoride ion. The present system provides an easy, rapid and selective determination method of fluoride ion ranging from 5 × 10−6 to 1 × 10−3 mol dm−3. The measurement of real samples with this tablet showed the similar results as those by the common method with the Alfusone reagent.  相似文献   

14.
Ji X  He Z  Ai X  Yang H  Xu C 《Talanta》2006,70(2):353-357
A competitive immunoassay for clenbuterol (CLB) based on capillary electrophoresis with chemiluminescence (CL) detection was established. The method was based on the competitive reaction of horseradish peroxidase (HRP)-labeled CLB (CLB-HRP) and free CLB with anti-CLB antiserum. The factors affecting the electrophoresis and CL detection were systematically investigated with HRP as a model sample. Under the optimal conditions, the tracer CLB-HRP and the immunoassay complex were separated, and the linear range and the detection limit (S/N = 3) for CLB were 5.0-40 nmol l−1 and 1.2 nmol l−1, respectively. The proposed method has been applied satisfactorily in the analysis of urine sample.  相似文献   

15.
Lin YW  Liu CW  Chang HT 《Talanta》2011,84(2):324-329
We have developed a fluorescence technique for the detection of Hg2+ and Pb2+ ions using polythymine (T33)/benzothiazolium-4-quinolinium dimer derivative (TOTO-3) and polyguanine (G33)/terbium ions (Tb3+) conjugates, respectively. Hg2+ ions induce T33 to form folded structures, leading to increased fluorescence of the T33/TOTO-3 conjugates. Because Pb2+ ions compete with Tb3+ ions to form complexes with G33, the extent of formation of the G33-Tb3+ complexes decreases upon increasing the Pb2+ concentration, leading to decreased fluorescence at 545 nm when excited at 290 nm. To minimize interference from Hg2+ ions during the detection of Pb2+ ions, we conducted two-step fluorescence measurements; prior to addition of the G33/Tb3+ probe, we recorded the fluorescence of a mixture of the T33/TOTO-3 conjugates and Hg2+ ions. The fluorescence signal obtained was linear with respect to the Hg2+ concentration over the range 25.0-500 nM (R2 = 0.99); for Pb2+ ions, it was linear over the range 3.0-50 nM (R2 = 0.98). The limits of detection (at a signal-to-noise ratio of 3) for Hg2+ and Pb2+ ions were 10.0 and 1.0 nM, respectively. Relative to other techniques for the detection of Hg2+ and Pb2+ ions in soil and water samples, our present approach is simpler, faster, and more cost-effective.  相似文献   

16.
Peng Zuo 《Talanta》2010,82(1):61-66
The use of highly active β-agonists as growth promoters is not appropriate because of the potential hazard for human and animal health. To investigate the residue level of these β-agonists, hapten microarrays were employed for clenbuterol (CLB), ractopamine (RAC) and salbutamol (SAL) residue analysis. CLB, RAC and SAL conjugates were immobilized on the slides, which were precoated by agarose film to construct hapten microarrays, and then the corresponding monoclonal antibodies of these β-agonists and the standards or samples were introduced for indirect competitive immunoassay. Finally, Cy3-labeled secondary antibody was employed to indicate the antigen-antibody complex. The fluorescence intensity of each spot was imaged and recorded, and the calibration curve of each analyte was obtained by plot fluorescence intensity against different standard concentrations. Compared to the ELISA, the hapten microarray method was more sensitive, which got the detection limits 0.09 μg/L for CLB, 0.50 μg/L for RAC, and 0.01 μg/L for SAL. What's more, with the recovery rate between 96.5% and 106.4%, and the coefficient of variation below 10%, the proposed hapten microarray method was shown to be both quantitative and reproducible.  相似文献   

17.
Shen XC  Jiang LF  Liang H  Lu X  Zhang LJ  Liu XY 《Talanta》2006,69(2):456-462
A novel method for the determination of 6-mercaptopurine (6MP) has been developed based on fluorescence enhancement of Au nanoparticles (AuNPs). The fluorescent AuNPs with mean diameter of ∼15 nm were synthesized in aqueous solution, exhibiting the stable maximum emission at 367 nm, under the excitation at wavelength of 264 nm. The AuNPs self-assembly with 6MP were characterized with transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, fluorescence and surface-enhanced Raman scattering (SERS) spectroscopy. The results revealed that the surface attachment through versatile binding sites of S10, N3, N9 and N7 atoms in 6MP produced the interparticle coupling and formed aggregates of AuNPs. As a result, the fluorescence emission enhancement was significantly observed upon AuNPs self-assembly with 6MP. The fluorimetric determination under optimal conditions indicated that 6MP could be quantified in good linearity range of 6.35 × 10−8 to 3.05 × 10−7 M, with a low detection limit of 4.82 × 10−10 M. The relative standard deviation (n = 11) was 1.8% at 2.54 × 10−8 M 6MP concentration level. The proposed method was successfully applied for the determination of 6MP in spiked human urine. The probable fluorescence enhancement mechanism was also discussed there.  相似文献   

18.
Docosanoic (C22), tetracosanoic (C24) and hexacosanoic (C26) acids are saturated very-long-chain fatty acids (VLCFA) present at trace levels in biosamples. VLCFA can be used as potential biomarkers for the diagnosis of hereditary diseases such as X-linked adrenoleukodystrophy. Because the analytes to be detected are at trace levels, a sensitive fluorimetric liquid chromatographic method was developed to analyze VLCFA in plasma. The method is simple based on extracting VLCFA from plasma with toluene, and the obtained toluene extract was subject to the derivatization of VLCFA with a fluorescent reagent 2-(2-naphthoxy)ethyl-2-(piperidino)ethanesulfonate (NOEPES) without solvent evaporation/replacement. The resulting fluorescent derivatives were monitored by fluorimetric detection (excitation at 225 nm and emission at 360 nm), giving a high sensitivity with the limit of detection about 5.0 nM (S/N = 3, 10 μL injected) of the analytes. Application of the method to the analysis of VLCFA in the plasma of patients with adrenoleukodystrophy proved practical and effective.  相似文献   

19.
A novel fluorescent probe for metal cations, which has a large Stokes shift, was synthesized from the reaction of N-(3-carboxy-2-naphthyl)-ethylenediamine-N,N′,N′-triacetic acid (CNEDTA) with 4-(N,N-dimethylaminosulfonyl)-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DBD-ED). The large Stokes shift is due to the FRET phenomenon between a donor (CNEDTA) and an acceptor (DBD-ED) fluorophore. When the fluorescent probe, DBD-ED-CNEDTA, was excited at 240, 340 and 440 nm, an emission maximum was observed only at 560 nm. However, the fluorescence (FL) at 480 nm, based upon the CNEDTA moiety, was not detected with excitation at 340 nm. The FL intensity of DBD-ED-CNEDTA was dependent upon the acidity of the medium and highest at pH 4.1. DBD-ED-CNEDTA reacted with metal cations, i.e., Zn, Cd, Al, Y, and La, in aqueous medium to form chelates. The spectral change of FL excitation and emission was small before and after the addition of the metal ions. However, the FL intensity was dependent upon the concentrations of the metal ions. In the case of Zn2+, the molar ratio bound with DBD-ED-CNEDTA was calculated as 1:1. The FL intensities after chelate formation of Zn/DBD-ED-CNEDTA (1:1) were enhanced by 3.8-fold (excitation at 340 nm, emission at 560 nm), 4.2-fold (excitation at 440 nm, emission at 560 nm), and 5.9-fold (excitation at 240 nm, emission at 560 nm), respectively. The FL probe was applied to the determination of Zn in a food supplement.  相似文献   

20.
A new method for the preparation of mesoporous ZnO/CdS@SiO2 core/shell nanostructure (CSN) has been developed. The mesoporous silica shells allow Ag+ to enter into the interior of the nanostructures to contact with ZnO/CdS core, accordingly causes the quenching of its band edge emission (475 nm) along with a simultaneous enhancement of red emission at around 595 nm. So, a novel visual fluorescence detection strategy for Ag+ ion is proposed based on a common core/shell Quantum dots nanostructure. Under optimal conditions, the enhanced fluorescence intensity at 595 nm increased linearly with the concentration of Ag+ ion ranging from 0.03 μM to 0.24 μM with a detection limit (3σ) of 3.3 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号