首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6]3+ (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au–S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6]3+) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10 U mL−1 with a detection limit of 0.18 U mL−1 (S/N = 3), which might promise this method as a good candidate for monitoring DNA methylation in the future.  相似文献   

2.
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6]3+, RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL−1 to 10 U mL−1, with a detection limit down to 0.03 U mL−1. Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence.  相似文献   

3.
Emulsion polymerization of ethylene from vinyl functionalized mesoporous silica nanoparticles (V‐MSNs) was reported. V‐MSNs were synthesized via deposition of vinyl monolayers on the pore walls, and the relative surface coverage of the vinyl monolayers was 74%. A fluorinated P‐O‐chelated nickel catalyst coordinated to the vinyl groups. These V‐MSNs hosting catalysts were full dispersed in water assisted by ultrasonic processor in the presence of surfactants. After addition of ethylene, polyethylene (PE) chains grew from the pores of V‐MSNs, formation of stable nanocomposite latices with solid content up to 17.3%. Our method made V‐MSNs well‐dispersed in the PE matrix. Especially, because of a strong interaction between PE and nanoparticles, a stable V‐MSNs core/PE shell structure was formed upon thermal treatment above melting temperature of the PE. Samples were analyzed by a number of techniques including TEM, N2 adsorption‐desorption, FTIR, and solid state 29Si NMR, DLS, 1H NMR, GPC, and DSC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1393–1402, 2009  相似文献   

4.
2-(1环-己烯基)环己酮是一种植物防腐杀菌剂,作为制备柑桔类水果的保鲜剂、分散染料染色的载体物质邻苯基苯酚(Ortho-phenylphenol,OPP)的原料而备受重视。其与环己叉基环己酮互为同分异构体,均由环己酮A ldol缩合反应合成,该过程是包括醇醛缩合、脱水在内的亲核加成-消除反应,  相似文献   

5.
Volatile organic compounds (VOCs) are growing pollutants now that cause the serious environmental pollution and threaten human health. The functionalized ordered mesoporous silica (FOMS) has attracted considerable attention in adsorbing VOCs. In this paper, the molecular dynamics simulation was used to simulate the adsorption performance of FOMS on VOCs (acetone, ethyl acetate and toluene). After simulating different pore sizes (2 nm, 3 nm and 4 nm) adsorption performances of ordered mesoporous silica (OMS) on VOCs, OMS with a pore size of 4 nm was selected to further study the influence of functional groups (vinyl, methyl, and phenyl). The following law was obtained: the saturated adsorption capacities of vinyl-functionalized OMS (V-FOMS) to acetone, ethyl acetate and toluene were 3.045 mmol.g?1, 2.568 mmol.g?1 and 1.976 mmol.g?1 respectively; the saturated adsorption capacities of methyl-functionalized OMS (M-FOMS) to acetone, ethyl acetate and toluene were 2.798 mmol.g?1, 2.312 mmol.g?1 and 1.698 mmol.g?1 respectively; the saturated adsorption capacities of phenyl-functionalized OMS (P-FOMS) to acetone, ethyl acetate and toluene were 2.124 mmol.g?1, 1.941 mmol.g?1 and 1.539 mmol.g?1 respectively. These results show that the adsorption ability of FOMS for different adsorbates follows the sequence of acetone > ethyl acetate > toluene. Furthermore, the interaction between functional groups (vinyl, methyl and phenyl) in FOMS and VOCs was explored. It is found that the interaction between different functional groups and adsorbates is different (interaction energy effect). This interaction energy effect promotes FOMS to better adsorb VOCs. This work would provide fundamental understanding and guidance for the development of novel adsorption materials for the adsorption of VOCs.  相似文献   

6.
Wenxiang Xiao  Dan Xiao 《Talanta》2007,72(4):1288-1292
Aminopyrene was convalently anchored onto the surface of mesoporous MCM-41 silica by post-grafting. This organic-inorganic hybrid has been applied as sensing material to phenols determination. Experimental results reveal that the functionalized material presents good sensitivity and selectivity towards resorcinol and can be used for resorcinol determination in water at pH 6.0. The fluorescence intensity of aminopyrene functionalized mesoporous silica decreases proportionally to the logarithm of resorcinol concentration in water. The linear range for resorcinol detection lies in 4.79-163 μM with a detection limit of 2.86 μM (S/N = 3).  相似文献   

7.
《中国化学快报》2020,31(8):2137-2141
To develop a novel food preservation technology for efficiently enhance bactericidal activity in a long term, hollow mesoporous silica spheres (HMSS) with regular nanostructures were applied to encapsulate natural organic antimicrobial agents. The chemical structures, morphologies and thermal stabilities of linalool, HMSS and linalool-functionalized hollow mesoporous silica spheres (L-HMSS) nanoparticles were evaluated by polarimeter, field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), fourier transform infrared (FT-IR), thermal gravimetric analyzer (TGA), nitrogen adsorption-desorption, zeta potential and small angle X-ray diffraction (SXRD). The results show that the linalool was successfully introduced into the cavities of HMSS, and the inorganic host exhibited a high loading capacity of about 1500 mg/g. In addition, after 48 h of incubation, the minimum bactericidal concentrations (MBC) of L-HMSS against Escherichia coli (E. coli), Salmonella enterica (S. enterica) and Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) were decreased to be 4 (< 5) mg/mL and 8 (< 10) mg/mL, respectively. These results revealed linalool-functionalized hollow mesoporous spheres could efficiently improve the bactericidal activities of the organic component. Furthermore, SEM images clearly showed that L-HMSS indeed had an extremely inhibitory effect against gram-negative (E. coli) and gram-positive (S. aureus) by breaking the structure of the cell membrane. This research is of great significance in the application of linalool in nano-delivery system as well as food industry.  相似文献   

8.
This work describes the development of highly efficient human DNA separation with functionalized mesoporous silica (FMS) materials. To demonstrate the electrostatic interaction effect between the target DNA molecules and FMS, three aminofunctionality types comprised of a mono-, a di-, and a tri-amine functional group were introduced on the inner surfaces of mesoporous silica particles. Systematic characterization of the synthesized materials was achieved by solid-state 29Si and 13C-NMR techniques, BET, FT-IR, and XPS. The DNA separation efficiency was explored via the function of the amino-group number, the amount used, and the added NaCl concentration. The DNA adsorption yields were high in terms of the use of triaminofunctionalized FMS at the 10 ng/L level, and the DNA desorption efficiency showed the optimum level at over 3.0 M NaCl concentration. The use of FMS in a DNA separation process provides numerous advantages over the conventional silica-based process.  相似文献   

9.
用十八烷基三甲基溴化铵(STAB)作模板剂,左旋香茅醇(CN)为结构助剂,利用溶胶-凝胶法,在CN/STAB摩尔比1∶1条件下制备了介孔二氧化硅纳米蚕茧;采用扫描电镜和透射电镜分析了产物的结构,并对其进行了氮气吸附-脱附测试.结果表明,所制备的介孔二氧化硅纳米蚕茧的孔道与蚕茧表面平行;搅拌速度对介孔二氧化硅纳米蚕茧的长度有较大的影响,随着搅拌速度的增加,其长度减小.  相似文献   

10.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

11.
本文以自组装法制得的双链DNA(ds.DNA)和G-四链体DNA(G4-DNA)修饰的金电极为工作电极,以Fe(CN)63-/4-为电活性指示剂,采用循环伏安法和微分脉冲伏安法研究了非电活性苯磺酰类5-氟尿嘧啶衍生物与ds-DNA和G4.DNA的相互作用.实验结果表明:苯磺酰类5-氟尿嘧啶与ds-DNA或G4.DNA的结合常数与苯环上邻、对位取代基的得失电子能力密切相关,强吸电子基团取代有利于苯磺酰类5-氟尿嘧啶选择性结合G-四链体DNA.  相似文献   

12.
The interaction of double-stranded(ds) and G-quadruplex(G4) DNA with sulfonyl 5-fluorouracil derivatives(5-fluoro-1-(arylsulfonyl) pyrimidine-2,4(1H,3H)-diones) was investigated in this research,in which Au electrodes modified with ds-DNA or G4-DNAs were used as a working electrode.The investigation showed that the binding affinity with G4-DNA was significantly increased when 5-fluorouracil(5-FU) was modified with arylsulfonyl groups.The presence of strong electron-withdrawing groups on benzene sulfonyl 5-FU greatly enhanced the binding selectivity(k G4-DNA /k ds-DNA).Such results provided new insights into the potential connections between the chemical structure of drug candidates and their anticancer activities.  相似文献   

13.
Performance of glassy carbon electrode on the determination of purines and DNA was found to be improved dramatically by activating the GCE with a simple but effective electrochemical pretreatment. Characteristics such as lowering of oxidation potential, enhancement of peak current and elimination of fouling effect were found for the activated GCE. By flow injection analysis, good reproducibility with relative standard deviations of 0.59 and 2.01% (n = 11) and rather low detection limits of 0.6 + 0.1 and 3.0 ± 0.4 nM can be obtained for the analysis of guanine and adenine. Solutions of denatured calf thymus DNA were analyzed by differential pulse voltammetry with the activated GCE. Good agreement between the obtained results and the known values confirms the feasibility of the activated GCE for DNA analysis.  相似文献   

14.
Mesoporous silica (MPS) modified with nickel and MPS doped with dysprosium and modified with nickel have been synthesized by the template method. The adsorbents are characterized by various techniques such as transmission electron microscopy, scanning electron microscopy, X-ray diffraction, inductively coupled plasma spectroscopy, and X-ray fluorescence analyses. The adsorption properties of the synthesized samples have been investigated by inverse gas chromatography. Furthermore, thermodynamic characteristics of the adsorption of test compound belonging to different classes of organic compounds were obtained. In addition, the contributions of the energy of specific interactions to the total adsorption energy were calculated. It is also shown that entropy plays the determining role in the adsorption of test compounds on synthesized mesoporous materials.  相似文献   

15.
Mesoporous amine-functionalized SBA-15 silica has been synthesized directly by the co-condensation of tetraethyl orthosilicate (TEOS) and aminopropyl-trimethoxysilane (APTMS) under acidic conditions with an APTMS/(APTMS + TEOS) molar ratio of 10%. The effect of synthesis conditions, including TEOS pre-hydrolysis, as well as the heating temperature and time, on the mesoscopical order and pore structure of the functionalized SBA-15 have been studied in detail by means of powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, infrared spectra and solid state 29Si nuclear magnetic resonance. A functionalized SBA-15 silica with a highly ordered two-dimensional P6 mm hexagonal symmetry and a narrow pore size distribution centered at 6 nm can be obtained if TEOS is allowed to pre-hydrolyze for 2 h. For the sample with TEOS pre-hydrolysis time of 4 h, aging at 50°C or 150°C leads to a more ordered pore arrangement compared to 100°C and also a narrower pore size distribution with larger pore volume. Increasing aging time is in favor of the formation of mesoscopically ordered structure, but fails to obtain a superior pore structure.  相似文献   

16.
A mesoporous silica was synthesised and used to modify the surface of carbon paste electrode (CPE). The electrochemical behaviours of p-aminophenol were investigated. Compared to the unmodified CPE, the mesoporous silica-modified CPE obviously lowers the oxidation potential of p-aminophenol, and remarkably increases its oxidation peak current. The effects of pH value, amount of mesoporous silica, accumulation potential and time were examined. As a result, a sensitive, rapid and convenient electroanalytical method was developed for p-aminophenol. The linear range is from 0.025?mg?L?1 to 3?mg?L?1, and the limit of detection is 0.01?mg?L?1 after 2-min accumulation. Finally, the method was successfully used to determine p-aminophenol in water samples.  相似文献   

17.
An electrochemical method for the simultaneous detection of two different DNA sequences from PAT and FMV 35S gene sequence using CdS and PbS quantum dots (QDs) as labels was described. The QDs were readily functionalized with oligonucleotides as electrochemical DNA probes and selectively hybridized to the complementary sequences immobilized on the microplate. The QDs anchored on the hybrids were dissolved in the solution by the oxidation of HNO3 and further detected by a sensitive differential pulse anodic stripping voltammetric method (DPASV). The DPASV signals of the oxidation of Cd^2+ and Pb^2+ ions present in the solution were different and reflected the identity of corresponding ssDNA targets sequences.  相似文献   

18.
Vanadyl(IV) acetylacetonate ([VO(acac)2]) was grafted onto a hexagonal mesoporous silica (HMS) using three different methodologies: method A – direct complex immobilisation; method B – functionalisation of the HMS with 3-aminopropyltriethoxysilane (APTES) followed by the complex immobilisation; and method C – treatment of the APTES functionalised support prepared by method B with trimethylethoxysilane (TMS) to deactivate eventually unreacted surface silanol groups, followed by complex grafting.  相似文献   

19.
Mesoporous pure silicas and functionalized silica with a narrow pore size distribution centered at 3.8 nm were prepared by a novel template, amphiphilic dendritic polyglycerol. The resulting silica materials were characterized by electron microscopy; nitrogen adsorption; (1)H, (13)C, and (29)Si solid-state cross-polarization magic-angle spinning NMR spectroscopy. It was shown that the template could be completely removed from the pure and functionalized silica in an environmentally friendly way by means of a simple water extraction procedure. Furthermore, it was shown that these materials could be easily functionalized, for example, by employing aminopropyl groups. Thus, a new environmentally friendly pathway to this fascinating class of silica material has been opened.  相似文献   

20.
A new magnetically recoverable nanocatalyst was prepared by functionalization of mesoporous silica (SBA‐15) with a Schiff base ligand, and then immobilization of palladium nanoparticles on it using a simple procedure. This heterogeneous catalyst was fully characterized using appropriate analyses and its catalytic efficiency was investigated in Heck reaction using iodo‐, bromo‐ and chlorobenzene derivatives and styrene, with the aim of synthesizing stilbene derivatives, a class of compounds with a variety of pharmacological properties. Some of the characteristics of this nanocatalyst include good dispersion of palladium nanoparticles on the SBA‐15 support, easy separation, catalyses the production of stilbene derivatives in a short time with excellent yields even for bromo‐ and chlorobenzene, and preservation of its catalytic activity after eight reaction cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号