首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) coupled with gas chromatography (GC) have been evaluated as element specific detectors for the determination of methylmercury in marine samples. Detection limits for methylmercury chloride, obtained using ICP-MS and AFS, were 0.9 and 0.25 pg as Hg, respectively. Methylmercury was determined in marine tissue reference materials IAEA 142 and NIST 8044 mussel homogenate, and DOLT-2 dogfish liver by GC–AFS, with found values of 45±7, 26±4, and 671±41 ng g−1, compared with certified values of 47±4, 28±2, and 693±53 ng g−1. The analyses of IAEA 142 and NIST 8044 were repeated using GC–ICP-MS, with found values of 48±9 and 30±3 ng g−1, respectively. Methylmercury was determined in real samples of ringed seal and beluga whale, with found values of 801±62 and 2830±113 ng g−1, respectively.  相似文献   

2.
Headspace solid phase microextraction (HS-SPME) was optimized for the analysis of pesticides with gas chromatography electron capture detection (GC-ECD) and high-resolution mass spectrometry. Factors influencing the extraction efficiency such as fiber type, extraction mode and temperature, effect of ionic strength, stirring and extraction time were evaluated. The lowest pesticide concentrations that could be detected in spiked aliquots after HS-SPME–GC-ECD ranged from 0.0005 to 0.0032 μg L− 1. Consequently hexachlorobenzene, trans-chlordane, 4,4′-DDD and 4,4′-DDE were detected in water samples after HS-SPME at concentrations ranging from 2.4 to 61.4 μg L− 1 that are much higher than the 0.1 μg L− 1 maximum limit of individual organochlorine pesticides in drinking water set by the European Community Directive. The same samples were cleaned with ISOLUTE C18 SPE sorbent with an optimal acetone/n-hexane (1:1 v/v) mixture for the elution of analytes. No pesticides were detected after SPE clean-up and pre-concentration. Precision for both methods was satisfactory with relative standard deviations less than 20%. This work demonstrated the superiority of HS-SPME as a sample clean-up and pre-concentration technique for pesticides in water samples as well as the need to identify and control point sources of pesticides.  相似文献   

3.
In order to attain a lower detection limit with the HS GC MIP analytical method (Head-Space Gas Chromatography with Microwave-Induced Plasma detection) recently developed for the analysis of methylmercury in biological samples, the quarter-wave Evenson-type cavity used until now was replaced by a TM010 Beenakker-type cavity, which was used with both argon and helium as carrier gas. With an argon plasma, an eightfold increase in detection limit was gained compared with the argon plasma sustained by the Evenson cavity, while only a four-fold increase was gained with the helium plasma. In a second step of the study, the MIP detector was replaced by an AFS (atomic fluorescence) detector (CVAFS Model-2, Brooks Rand Ltd, Seattle, USA). With this AFS detector a detection limit of 1 ng methyl mercury per g biological tissue could be reached; i.e. measurements were 40 times more sensitive than those using the Evenson cavity. This detector has some other advantages compared with MIP detection: it is less expensive and easier to manipulate, while the same precision and accuracy are obtained. The use of AFS as detector in the headspace gas chromatographic system is therefore an important improvement for the analysis of methyl-mercury in biological samples.  相似文献   

4.
The determination of methylmercury (MeHg) in environmental samples by ethylation derivation-gas chromatography-atomic fluorescence spectrometry (ED-GC-AFS) is associated with an intimate problem of water moisture accumulation introduced in the ethylation step, which enters the detection system and cause a spectroscopic interference. With a simple modification on the GC-AFS system, this problem was eliminated and the analytical quality of the measurements was significantly improved. The presence of dissolved sulfide in samples can also cause serious chemical interference in the ethylation step resulting in lower or total loss of the MeHg signal. It was found that a masking system of CuSO4-Na2C2O4 was able to eliminate this interference. With this system, the accurate determination of trace amount of MeHg in high dissolved sulfide containing samples was achieved. Satisfactory analytical results were obtained with the certified reference sediment IAEA405, sulfate reducing bacteria culture and sulfide containing water samples. The limit of detection and quantitation of this masking system is 0.01 and 0.04 ng L−1 respectively. Other factors affecting ethylation are also discussed.  相似文献   

5.
A new method for determining the endocrine disrupting substance 4-nonylphenol (technical grade = mixture of isomers, 4-NP) from water samples has been developed by using 4-(2,6-dimethylhept-3-yl)phenol (4-sec-NP) as model compound. This branched monoalkylphenol is shown to serve as internal standard (IS) for the determination of technical 4-nonylphenol. To the best of our knowledge, 4-(2,6-dimethylhept-3-yl)phenol (racemic mixture) is a newly synthesized 4-nonylphenol isomer and has not been described elsewhere. Recoveries have been determined by analyzing spiked water samples from distilled water, river water and wastewater. Following acetylation, the compounds were enriched via solid phase extraction (SPE). Analyses of the compounds were performed by capillary column gas chromatography/mass spectrometry (GC/MS), operating in selected ion-monitoring (SIM) mode. The recovery of technical 4-NP using either the newly prepared 4-sec-NP or 4-n-nonylphenol (4-n-NP) as IS have been compared. 4-sec-NP showed slightly better results. However, in the first series of experiments using wastewater, the yields for the derivatization of the two standard compounds were remarkably different. The yield for derivatization of 4-n-NP was approximately 20%, probably due to the difficult matrix of the wastewater. In contrast, the yield for the derivatization of 4-sec-NP was considerably higher (approximately 63%). This problem can be solved by increasing the concentration of the reagent used for derivatization. For better control of the clean-up process, we recommend application of 4-sec-NP as internal standard, at least in water samples with complex matrices (e.g., high content of hydroxylated compounds).  相似文献   

6.
Consumption of non-steroidal anti-inflammatory drugs (NSAIDs) is increasing and with it the danger of environmental pollution by pharmaceutical residues. Publications regarding NSAIDs in the environment not only show that they are toxic to many animal species, but also highlight the need for robust analytical methods for monitoring the level of such contaminants in environmental matrices. In our study we selected the four most widely used NSAIDs in Slovenia and Central Europe, ibuprofen, naproxen, ketoprofen and diclofenac, and studied their extraction from sediment samples. We examined several extraction techniques (ultrasonic extraction, Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and microwave-assisted extraction) using a spiked sediment sample and determined optimal extraction conditions. After extraction we applied a clean-up step, derivatisation of the analytes and gas chromatography with mass spectrometric detection (GC-MSD) and selected the most appropriate extraction procedure. The optimised analytical method chosen for analysis of sediment samples consisted of microwave-assisted extraction, clean-up of the extract with SPE, derivatisation with MSTFA and determination with GC-MSD. The optimised procedure was applied to the analysis of two environmental river samples taken from the vicinity of Novo mesto, the biggest town in the south eastern part of Slovenia with 62,000 inhabitants, a hospital and a pharmaceutical factory in its vicinity. While analysis of the sample taken upstream of the town showed no detectable amounts of NSAIDs, analysis of samples taken downstream showed quantifiable levels of two of the studied NSAIDs (naproxen and ketoprofen). Besides these two NSAIDs, river water samples sampled at the same time and location on the River Krka also showed the presence of diclofenac. Sampling on the River Krka and other Slovene rivers will in the future be repeated at different sampling points in order to track down the main sources of pollution.  相似文献   

7.
X—射线荧光光谱测定钙质贝壳中17种元素   总被引:2,自引:0,他引:2  
包生祥  沈平 《分析化学》1992,20(6):688-691
为适应古地球化学环境和古生态研究的需要,本文实验了用XRF粉末压片法测定贝壳中17种元素。文中重点讨论了少量样品压片和薄片(及薄样)装样方法。  相似文献   

8.
This paper reports the assessment of the total mercury (T-Hg) and methylmercury (MeHg) contamination of mussel samples collected by two sampling campaigns from along the coastline of Sardinia (Italy). T-Hg has been determined by a direct mercury analyser (DMA) whereas MeHg has been determined by gas chromatography-mass spectrometry (GC-MS) after acid extraction, and employs a novel NaBPh4 derivatization method. The evaluation of the quality of measurements was carried out by analysing candidate certified reference material (CRM) BCR 710, for MeHg and T-Hg, and CRM IAEA-350 for T-Hg. In the analysed samples, the T-Hg concentrations range from 35 to 115 μg kg−1 and from 40 to 830 μg kg−1, for the two sampling campaigns, respectively, whereas the MeHg concentrations range from l5 to 51 μg kg−1 and from 17 to 116 μg kg−1. Consequently, the MeHg/T-Hg ratios range from 0.33 to 0.91 and from 0.14 to 0.98, respectively. Despite the increasing trend of Hg concentration from the first to the second sampling campaign, the T-Hg concentration of all the samples was much below the 0.5 μg g−1 WHO limit, and the MeHg values ranged between 2.2 and 17.2 μg kg−1, not exceeding the 43.5 μg kg−1 tolerable daily residue level calculated for Italy.  相似文献   

9.
In this study, hollow fiber based liquid-phase microextraction (HF-LPME), coupled with GC, GC–MS and GC–IRMS detections, was employed to determine petroleum hydrocarbons in spilled oils. According to the results, the HF-LPME method collected more low-molecular weight components, such as C7–C11n-alkanes, naphthalene, and phenanthrene, than those collected in conventional liquid–liquid extraction (LLE). The results also showed that this method had no remarkable effect on the distributions of high-molecular weight compounds such as >C18n-alkanes, C1–C3 phenanthrene, and hopanes. Also, the carbon isotopic compositions of individual n-alkanes in the two preparation processes were identical. Accordingly, HF-LPME, as a simple, fast, and inexpensive sample preparation technique, could become a promising method for the identification of oil spill sources.  相似文献   

10.
A method for the determination of cadmium in slurries of marine sediment using palladium and phosphate as chemical modifier has been optimized. To stabilize the marine sediment slurry, Triton X-100 at 0.1% was used. To obtain a complete pyrolysis of the slurry sample two mineralization steps were used, the first at 480 °C and the second at 600 °C and 700 °C for phosphate and palladium, respectively. The precision and accuracy of the method have been studied by analyzing the Reference Material PACS-1 (marine sediment) of National Research Council Canada. The detection limits (LOD) were 11.9 g kg–1 for phosphate and 42.0 g kg–1 when palladium was used. These methods have been applied to the determination of cadmium in marine sediment samples from the Galicia coast and the results of both methods were compared; no significant differences were found between the two procedures.  相似文献   

11.
A semi-automatic flow-based method for the simultaneous determination of 9 pharmaceuticals and 3 hormones in water samples in a single analytical run is proposed. The analytes were retained on a solid-phase extraction sorbent column and 1 μL of the eluate analysed by gas chromatography in combination with electron impact ionization mass spectrometry in the SIM mode. The sorbent used, Oasis-HLB, provided near-quantitative recovery of all analytes. The proposed method was validated with quite good analytical results including low limits of detection (0.01–0.06 ng L−1 for 100 mL of water) and good linearity (r2 > 0.993) throughout the studied concentration ranges. The method provided good accuracy (recoveries of 85–103%) and precision (between- and within-day RSD values less than 7%) in the determination of the pharmaceuticals and hormones in tap, river, pond, well, swimming pool and wastewater.  相似文献   

12.
Pereira LA  Amorim I  da Silva JB 《Talanta》2006,68(3):771-775
A procedure for the determination of cadmium, chromium, and lead in marine sediment slurries by electrothermal atomic absorption spectrometry is proposed. Slurry was prepared by mixing 10 mg of ground sample with particle size smaller than 50 μm completed to the weight of 1.0 g with a 3% nitric acid and 10% hydrogen peroxide solution. The slurry was maintained homogeneous with an aquarium air pump. For cadmium, the best results were obtained using iridium permanent with optimum pyrolysis and atomization temperatures of 400 and 1300 °C, respectively, a characteristic mass, mo (1% absorption), of 2.3 pg (recommended 1 pg). Without modifier use, zirconium, ruthenium, and rhodium mo were 3.4, 4.1, 4.6, and 4.8 pg, respectively. For chromium, the most sensitive condition was obtained with zirconium permanent with optimum pyrolysis and atomization temperatures of 1500 and 2500 °C, mo of 6.6 pg (recommended 5.5 pg); and without modifier use, rhodium, iridium, and ruthenium mo were 5.3, 8.8, 8.8, and 8.9 pg, respectively. For lead, the best modifier was also zirconium, mo of 8.3 pg for the optimum pyrolysis and atomization temperatures of 600 and 1400 °C, respectively, (recommended mo of 9.0 pg). For iridium, ruthenium, without modifier, and rhodium, mo were 14.7, 15.5, 16.5, and 16.5 pg, respectively. For all the modifiers selected in each case, the peaks were symmetrical with r2 higher than 0.99. Being analyzed (n = 10), two marine sediment reference materials (PACS-2 and MESS-2 from NRCC), the determined values, μg l−1, and certified values in brackets, were 2.17 ± 0.05 (2.11 ± 0.15) and 0.25 ± 0.03 (0.24 ± 0.01) for cadmium in PACS-2 and MESS-2, respectively. For chromium in PACS-2 and MESS-2 the values were 94.7 ± 5.6 (90.7 ± 4.6) and 102.3 ± 10.7 (106 ± 8), respectively. Finally, for lead in PACS-2 and MESS-2, the results obtained were 184 ± 7 (183 ± 8) and of 25.2 ± 0.40 (21.9 ± 1.2), respectively. For cadmium and lead in both samples and chromium in PACS-2, calibration was accomplished with aqueous calibration curves. For chromium in MESS-2, only with the standard addition technique results were in agreement with the certified ones. The limits of detection (k = 3, n = 10) obtained with the diluents were 0.1, 3.4, and 3.6 μg l−1 for cadmium, chromium, and lead, respectively.  相似文献   

13.
Fentanyl, a kind of intravenous narcotic analgesic, is widely used in clinical anesthesia. As a potential pollution, it was detected in both the air of the cardiothoracic operating room and patients' expiratory circuit. However, whether the fentanyl in patients' expiratory circuit is exhaled by patients is unknown. In this study, breath samples were taken from the expiratory circuits of anesthetic machine linked to the patients who received intravenous fentanyl, a solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) method was developed to detect and quantify fentanyl in breath samples. The parameters influencing adsorption (extraction time, temperature,) and desorption (desorption time) of the analyte on the fiber were investigated and validated for method development. The developed method was proved to be simple, easy, and inexpensive and offer high sensitivity and reproducibility. Linear range was obtained from 0.05 ng/mL to 0.8 ng/mL. The limit of detection was 0.01 ng/mL while an interday precision of less than 12.13% (n = 5) could be achieved. Six patients were involved in this study; results showed presence of fentanyl in the breath of patients who received intravenous fentanyl, and fentanyl concentrations in breath varied from 6.00 to 20.89 pg/mL. In conclusion, fentanyl can be exhaled by patients who received intravenous fentanyl.  相似文献   

14.
An intercomparison exercise was organized between seven laboratories using various isolation procedures (extraction, distillation, ion-exchange and alkaline digestion) and detection systems (CV AAS, cold vapour atomic absorption spectroscopy; CV AFS, cold vapour atomic fluorescence spectroscopy; GC, ECD, gas chromatography electron capture detector and HPLC with CV AFS detection) for determination of methylmercury compounds in sediment sample. All certification criteria were fulfilled and therefore the value for total concentration of methylmercury compounds was certified to be 5.46 ng g?1, with a 95% confidence interval from 4.07–5.84 ng g?1. The acceptable range, calculated as two times the confidence interval of the mean is therefore from 4.68–6.23 ng g?1. This is the first sediment reference material ever to be certified for concentration of methylmercury compounds. Comparison of the data obtained by various methodologies has shown that the most critical step is the isolation of methylmercury compounds from binding sites. Acid leaching only cannot release methylmercury compounds quantitatively. Total release of methylmercury compounds could only be achieved by alkaline digestion or distillation. This simple intercomparison exercise has shown that since large numbers of laboratories world-wide are performing methylmercury compound analyses using various improved and specific separation methods and sensitive detection systems, certification of methylmercury compounds in different biological and environmental samples should not be a problem in the future.  相似文献   

15.
A method was developed for determination of methylmercury and estimation of total mercury in seafood. Mercury (Hg) compounds were extracted from 0.5 g edible seafood or 0.2 g lyophilized reference material by adding 50 ml aqueous 1% w/v l-cysteine·HCl·H2O and heating 120 min at 60 °C in glass vials. Hg compounds in 50 μl of filtered extract were separated by reversed-phase high performance liquid chromatography using a C-18 column and aqueous 0.1% w/v l-cysteine·HCl·H2O + 0.1% w/v l-cysteine mobile phase at room temperature and were detected by inductively coupled plasma-mass spectrometry at mass-to-charge ratio 202. Total Hg was calculated as the mathematical sum of methyl and inorganic Hg determined in extracts. For seafoods containing 0.055-2.78 mg kg−1 methylmercury and 0.014-0.137 mg kg−1 inorganic Hg, precision of analyses was ≤5% relative standard deviation (R.S.D.) for methylmercury and ≤9% R.S.D. for inorganic Hg. Recovery of added analyte was 94% for methylmercury and 98% for inorganic Hg. Methyl and total Hg results for reference materials agreed with certified values. Limits of quantitation were 0.007 mg kg−1 methylmercury and 0.005 mg kg−1 inorganic Hg in edible seafood and 0.017 mg kg−1 methylmercury and 0.012 mg kg−1 inorganic Hg in lyophilized reference materials. Evaluation of analyte stability demonstrated that l-cysteine both stabilized and de-alkylated methylmercury, depending on holding time and cysteine concentration. Polypropylene adversely affected methylmercury stability. Total Hg results determined by this method were equivalent to results determined independently by cold vapour-atomic absorption spectrometry. Methylmercury was the predominant form of Hg in finfish. Ratios of methylmercury/total Hg determined by this method were 93-98% for finfish and 38-48% for mollusks.  相似文献   

16.
The determination of cobalt in marine sediments by electrothermal atomic absorption spectrometry was studied using no modifier and magnesium and titanium as modifiers. Titanium is one of the major sediment constituents, which widely affects the cobalt determination and it was studied as a chemical modifier since it was the only concomitant that increased the cobalt signal in the concentration range usually found in sediments. The performance of Mg and Ti as chemical modifiers was compared relative to maximum pyrolysis and atomization temperatures, linear calibration range, sensitivity and matrix effects. The pyrolysis curves showed that the analyte could be stabilized up to 1400 °C when either Ti or Mg(NO3)2 was present, while only 1000 °C could be used in the absence of a modifier. The optimum atomization temperature was 2500 °C in all cases. Analytical curves were compared using no modifier, 5 μg Ti and 100 μg Mg(NO3)2 as modifiers, and the linear range found was up to approximately 4 ng Co whether a modifier was used or not. With Ti as a chemical modifier, analytical curves for cobalt in aqueous solution and in a synthetic matrix resulted in the same sensitivity (m0=55 pg), whereas the use of Mg led to characteristic mass values of 59 and 72 pg in aqueous solution and in a synthetic matrix, respectively, showing some matrix effect. The detection limits (3σ, n=10) were 0.4 μg g−1 using no modifier and 0.3 μg g−1 with Ti as a modifier in the original matrix. A reference estuarine sediment NIST 1646 with a non-certified content of 10.5 μg g−1 Co was analyzed and the found value of 10.9±2.4 μg g−1, (n=3), using Ti as chemical modifier and calibration against aqueous standards, was in good agreement with the recommended value.  相似文献   

17.
Two simple analytical methods for the simultaneous determination and quantification of benzotrifluoride and eight chlorinated, amino and nitro benzotrifluoride derivatives in groundwater are proposed. Benzotrifluoride, 4-chlorobenzotrifluoride, 2,4-dichlorobenzotrifluoride and 3,4-dichlorobenzotrifluoride, were extracted by Purge-and-Trap on the basis of their volatile properties, while 3-aminobenzotrifluoride, 4-nitrobenzotrifluoride, 3-amino-4-chlorobenzotrifluoride, 3-nitro-4-chlorobenzotrifluoride and 4-chloro-3,5-dinitrobenzotrifluoride extractions were done with an automated SPE system. The analytical separations and detections were performed with two different GC systems, both equipped with single quadrupole mass spectrometer as detector. The LOD ranges for the two methods were 0.002–0.005 μg L−1 and 0.01–0.07 μg L−1, respectively. Both extraction methods were developed using spiked Milli-Q water and were then demonstrated with groundwater samples collected during autumn 2008. The areas of groundwater collection were polluted due to an episode of improper industrial soil disposal and consequent leakage of aliphatic and aromatic, fluorinated chemicals into the groundwater. This work eventually revealed the presence of several benzotrifluoride compounds most of them, like dichloro- and amino-derivatives, never been reported as environmental contaminants.  相似文献   

18.
Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH3Hg+ was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH3Hg+ was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be ∼95% by comparing the response with traditional SnCl2 chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg2+; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes “green” chemistry. The potential for application to other sample types and analytes is evident.  相似文献   

19.
This work describes a liquid chromatography–tandem mass spectrometry (LC–MS/MS) procedure for multiplex screening, ultratrace quantification and reliable confirmation of barbital series residues in animal-derived food matrices. The method is developed based on a distinct dependency of the electrospray ionization (ESI) response of nine structural homologues on LC eluent properties and gas-phase ion chemistry during the ESI process. The “wrong-way-round” negative ionization aspect has been explored to optimize the compatibility of the hyphenated LC–MS/MS technique, which facilitates detection limits at 30–100-fold lower than 0.01 ppm without derivatization or post-column basification step. A mobile phase using methanol modified with 0.01% acetic acid is adopted to achieve an approximately 2–9-fold increase in signal-to-noise ratio over the results under suboptimal conditions. There is no significant differential matrix effects or deuterium isotope effects on chromatographic retention and ESI responsiveness at all levels across the different analyte–matrix pairs. Mean recoveries ranged from 79.6% (barbital) to 108% (secobarbital) at fortified levels of 0.5–20 ng/g within relative standard deviations less than 11%. Between-run repeatability and within-laboratory reproducibility were 3–11% and 5–13%, respectively. An ion ratio criterion for valid detection limit data for simultaneous screening of homologous multiresidues in complex sample matrices is proposed. The satisfactory applicability of the newly described procedure to 43 real samples including pork, poultry meat, swine liver, fish tissue and shrimp muscle demonstrated the LC–MS/MS technique with facile sample handling can serve as an attractive alternative analytical method accepted for regulatory purpose.  相似文献   

20.
Optimized techniques for measuring butyltins at the sub-part-per-trillion (ppb; 1:1012) level in seawater and at the part-per-billion (ppb; 1:109) level in tissues and sediments are presented. Purge and trap/hydride derivatization followed by atomic absorption (AA) detection was optimized to give better sensitivity than was previously attained for seawater, yielding environmental detection limits of 0.08–0.2 ng dm?3. Improvement in precision and reproducibility in measurement of butyltins in tissues and sediments was attained by adjustment of the concentration in an organic extract to minimize matrix effects and by use of internal standards. The tissues and sediments were homogenized and extracted with methylene chloride (CH2Cl2) after acidification. The butyltins in the organic layer were derivatized with hexylmagnesium bromide and analyzed by gas chromatography (GC) with a flame photometric detector (FPD). The absolute detection limits in tissues and sedimets were 0.1 ng for tributyltin (TBT), 0.12 ng for dibutyltin (DBT) and 0.29 ng for monobutyltin (MBT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号