首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrolysis gas chromatography–mass spectrometry (PyGC-MS) was used as a rapid method for the characterization of permanent marker ink. Twenty-four samples of various colours purchased from different manufacturers were characterised. Four main typologies of polymer-binding medium could be distinguished on the basis of the pyrolysis products, and differentiation between permanent markers of different manufacturers could be accomplished. For some permanent marker samples, PyGC-MS analysis allowed pigment identification as well.  相似文献   

2.
Multivariate curve resolution–alternating least squares (MCR–ALS) analysis is proposed to solve chromatographic challenges during two-dimensional gas chromatography–time-of-flight mass spectrometry (GC?×?GC–TOFMS) analysis of complex samples, such as crude oil extract. In view of the fact that the MCR–ALS method is based on the fulfillment of the bilinear model assumption, three-way and four-way GC?×?GC–TOFMS data are preferably arranged in a column-wise superaugmented data matrix in which mass-to-charge ratios (m/z) are in its columns and the elution times in the second and first chromatographic columns are in its rows. Since m/z values are common for all measured spectra in all second-column modulations, unavoidable chromatographic challenges such as retention time shifts within and between GC?×?GC–TOFMS experiments are properly handled. In addition, baseline/background contributions can be modeled by adding extra components to the MCR–ALS model. Another outstanding aspect of MCR–ALS analysis is its extreme flexibility to consider all samples (standards, unknowns, and replicates) in a single superaugmented data matrix, allowing joint analysis. In this way, resolution, identification, and quantification results can be simultaneously obtained in a very fast and reliable way. The potential of MCR–ALS analysis is demonstrated in GC?×?GC–TOFMS analysis of a North Sea crude oil extract sample with relative errors in estimated concentrations of target compounds below 6.0 % and relative standard deviations lower than 7.0 %. The results obtained, along with reasonable values for the lack of fit of the MCR–ALS model and high values of the reversed match factor in mass spectra similarity searches, confirm the reliability of the proposed strategy for GC?×?GC–TOFMS data analysis.   相似文献   

3.
The alterations produced by microbiological attack on terpenoid resin-based varnishes from panel and canvas paintings have been evaluated using pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) and gas chromatography–mass spectrometry (GC–MS). The proposed methods include the on-line derivatisation of drying oils and diterpenoid resins using hexamethyldisilazane during pyrolysis and the application of methyl chloroformate as a derivatisation reagent for triterpenoid resins in GC–MS. Two types of specimens, consisting of model oil medium prepared from linseed oil and model spirit varnishes prepared from colophony and mastic resins dissolved in turpentine, have been used as reference materials. For a series of specimens upon which different genera of bacteria and fungi were inoculated and encouraged to grow, analyses indicated that no mechanisms that commonly occur during the attack of enzymes on drying oils and terpenoid biodegraders were observed to occur in the oil medium and varnishes studied. Thus, the degradation pathways observed in the performed trials usually occur as consequence of natural ageing. Specific trials consisting of the application of biocides to uninoculated colophony varnish resulted in the identification of processes that produce undesirable degradation of the varnish due to interactions between the biocide and the varnish components. Finally, the studied biocides—Biotin, New-Des and Nipagine—generally exhibited good inhibiting effects on the microorganisms studied, although some interesting differences were found between them regarding the application method and type of biocide.  相似文献   

4.
Pyrolysis gas chromatography–mass spectroscopy (PGC–MS) has been proved to be a powerful method to analyze both the volatile additives and the macromolecular structure of polymer materials. In this paper, flash evaporation technique was used to analyze the volatile degradation products of polymer materials during natural and artificial aging. In high density polyethylene (HDPE) composites, mainly n-alkanes with carbon number from 14 to 29 were detected after natural aging, while no oxidative product was found. Different composites have different n-alkane distributions. In contrast, various oxidative products including ketones, alcohols, esters and unsaturated species could be found in aged polypropylene (PP) nanocomposites. Nanoparticles accelerated the chain scission of PP and increased the formation of oxidative products significantly. During thermal oxidation of nitrile rubber (NBR) seal rubbers, heat/oxidation-induced extra crosslinking predominated and no volatile degradation products was detected. The main change happened in the volatiles is the decrease of additives, especially paraffins, antioxidant RD and hindered phenol. This resulted in the hardening of the rubber and the weakening of the protection from oxidation. Furthermore, the additive distribution along the depth was investigated, showing different migration speeds of different additives. From the additive levels remained in the NBR rubber, it is possible to predict the degradation status. In summary, PGC–MS can supply abundant information of polymer degradation and is helpful for mechanism research.  相似文献   

5.
A method is presented for qualitative identification of dissolved volatile organic compounds (VOCs) in non-drinking tap water samples based on applications of both solid-phase extraction (SPE) and gas chromatography–mass spectrometric (GC–MS) techniques. Water samples were collected and passed over a micro-column packed with acid treated active silica gel phase (pH = 2.6) for adsorption of dissolved organic species under this pH-condition. Silica-bound-organics were then divided into equal portions followed by suspension into organic solvents of different polarities such as methanol, ethanol, butan-1-ol, ethyl acetate, diethyl ether and chloroform. These suspensions were then automatically shaken for 1 h at room temperature. The organic extracts were subjected to GC–MS analysis under temperature programming conditions. The mass spectrum of each eluted chromatographic peak was library searched or manually interpreted to identify the correct name and structure. Blank solvent and silica samples were also subjected to the same GC–MS analysis for comparison.  相似文献   

6.
Monoacylglycerols (MAGs) are lipids found in trace amounts in plants and animal tissues. While they are widely used in various industrial applications, accurate determination of the regio-specific distribution is hindered by the lack of stable, commercially available standards. Indeed, unsaturated β-MAG (or Sn-2 MAG) readily undergoes isomerization into α-MAG (acyl chain is attached to the Sn-1 or the Sn-3 position). In the present study, we describe structural elucidation of α- and β-regio-isomers of monopalmitoyl-glycerol (MAG C16:0) as model compounds in their silylated forms using gas chromatography–mass spectrometry (GC–MS) with electronic impact (EI) ionization. MS fragmentation of α-MAG C16:0 is characterized by the loss of methylene(trimethylsilyl)oxonium (103 amu) and the consecutive loss of acyl chain yielding a fragment ion at m/z 205. The fragmentation pattern of β-MAG C16:0 shows a series of diagnostic fragments at m/z 218, 203, 191 and 103 that are not formed from the α-isomer and hereby enable reliable distinction of these regio-isomers. Possible fragmentation scenarios are postulated to explain the formation of these marker ions, which were also applied to characterize the regio-isomer composition of a complex mixture of MAG sample containing n-3 long-chain polyunsaturated fatty acids.  相似文献   

7.
Measuring polymer solubility accurately and precisely is challenging. This is especially true at unfavourable solvent compositions, when only very small amounts of polymer dissolve. In this paper, pyrolysis–gas chromatography–mass spectrometry (Py-GC-MS) is demonstrated to be much more informative and sensitive than conventional methods, such as ultraviolet spectroscopy. By using a programmed-temperature-vapourisation injector as the pyrolysis chamber, we demonstrate that Py-GC-MS can cover up to five orders of magnitude in dissolved polymer concentrations. For polystyrene, a detection limit of 1 ng mL?1 is attained. Dissolution in poor solvents is demonstrated to be discriminating in terms of the analyte molecular weight. Py-GC-MS additionally can yield information on polymer composition (e.g. in case of copolymers). In combination with size-exclusion chromatography, Py-GC-MS allows us to estimate the molecular weight distributions of minute amounts of a dissolved polymer and variations therein as a function of time.
Figure
SEC/-/Py-GC-MS (reconstructed, chromatograms) of dissolved polymer in ACN/THF%.  相似文献   

8.
Polyvinyl resins, in particular poly(vinyl acetate) emulsions (PVA), are widely used in contemporary paintings as binding media, because of the optimum mechanical and optical properties these polymers confer on the paint layers. A study has been carried out to chemically characterize samples of PVA resins prepared as coating films from commercial products currently available from fine arts suppliers. For this purpose, a new method has been based on "on-line" silylation-pyrolysis using hexamethyldisilazane as derivatisation reagent in pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). This proposed procedure leads to unambiguous identification of this type of binder and improves conventional direct Py-GC-MS. PVA media used in three contemporary paintings from a private collection and from the Museum of Fine Arts of Málaga (Spain) have been successfully identified with this procedure. As a second step of this work, a study devoted to the characterization of changes in the chemical composition of the PVA commercial products studied has been carried out. Effects induced in the specimens by three different types of artificial accelerated ageing process--thermal, UV light, and in an SO(2)-polluted chamber--were compared.  相似文献   

9.
Samples of four natural dyes from different organic families—natural madder (anthraquinonoid), curcuma (curcuminoid), saffron (carotenoid) and indigo (indigotic)—were analysed using a new procedure based on pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS), which includes the on-line derivatisation of the natural dyes using hexamethyldisilazane (HMDS). In addition, a previous procedure involving the addition of a 10% H2SO4 aqueous solution to the dye and further separation with ethyl acetate has been tested. This procedure enhances the sensitivity of the method by extracting the colouring compounds from the rest of the compounds present in the natural dye. Two possible derivatising reagents—HMDS and tetramethylammonium hydroxide (TMAH)—were compared in order to assess their effectiveness in the proposed method. Characteristic peaks from trimethylsilyl derivatives of alizarin, quinizarin, xanthopurpurin and purpurin were obtained for madder; peaks from safranal, isophorone and trimethylsilyl derivative of crocetin for saffron; peaks from 4-(4-hydroxy-3-methoxy)phenyl-3-buten-2-one and 4-(4-hydroxy-3-methoxy)phenyl-2-butanone, which are primary pyrolysis products of curcuma, and peaks from indole, 2-methylindole and 2,3-dihydroindol-2-one, which are primary pyrolysis products of indigo, among others, were obtained. The reported procedure leads to the unambiguous identification of the four studied dyes from solid samples formed by individual dyes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
In this work, the application of multivariate curve resolution-alternating least squares (MCR-ALS) is proposed for extracting information from multitechnique fused multivariate data (UV–VIS absorption, fluorescence, and liquid chromatography–mass spectrometry) gathered during the biosynthesis of violacein pigment. Experimental data sets were pretreated and arranged in a row-wise augmented data matrix before their chemometric investigation. Five different chemical components were resolved. Kinetic and spectral information about these components were obtained and their relationship with violacein biosynthesis was established. Three new chemical compounds with molar masses of 453, 465, and 479 u, until now not reported in the literature, were identified and proposed as intermediates in the biosynthesis of other indolocarbazoles. The precursor (tryptophan), one intermediate (deoxyviolacein), and the final product (violacein) of violacein biosynthesis were identified and characterized using the proposed approach. The chemometric procedure based on the MCR-ALS method has proved to be a powerful tool to investigate violacein biosynthesis and its application can be easily extended to the study of other bioprocesses.  相似文献   

11.
A multiresidue method has been developed for quantification and identification of 66 multiclass priority organic pollutants in water by fast gas chromatography (GC) coupled to mass spectrometry (MS). Capabilities and limitations of single quadrupole mass spectrometer as detector in fast GC were studied evaluating the chromatographic responses in terms of sensitivity and chromatographic peak shapes, as they were influenced by scan time. The number of monitored ions in a selected ion monitoring (SIM) group strongly conditioned the scan time and subsequently the number of data points per peak. A compromise between peak shape and scan time was adopted in order to reach the proper conditions for quantitative analysis. An average of 10–15 points per peak was attained for most compounds, involving scan times between 0.1 and 0.22 s. The method was validated for mineral, surface, and groundwater. A solid-phase extraction pre-concentration step using C18 cartridges was applied. Four isotopically labeled standards were added to the samples before extraction and used as surrogates to ensure a reliable quantification. Analyses were performed by GC–MS in electron ionization mode, monitoring the three most abundant and/or specific ions for each compound and using the intensity ratios as a confirmatory parameter. With a chromatographic run of less than 10 min, SIM mode provided excellent sensitivity and identification capability due to the monitoring of three ions and the evaluation of their intensity ratio. Limits of detection below 10 ng/L were reached for most of the 66 compounds in the three matrices studied. Accuracy and precision of the method were evaluated by means of recovery experiments at two fortification levels (10 and 100 ng/L), obtaining recoveries between 70% and 120% in most cases and relative standard deviations below 20%. The possibilities of a simultaneous SIM scan method have also been explored for non-target qualitative analysis. The developed method has been applied to the analysis of surface water samples collected from the Mediterranean region of Spain.  相似文献   

12.
This review discusses the characterisation of natural organic dyestuffs of historical interest by liquid chromatography–mass spectrometry. The structures of the most important natural organic dyestuffs traditionally used are presented and discussed from the perspective of their analytical chemical determination. The practical aspects of the determination of this inhomogeneous range of compounds with different structures, such as anthraquinones, flavonoids, indigoids or tannins, are discussed with their implications for sample preparation, liquid chromatographic separation and mass spectrometric detection. The particular focus of this review is the discussion of the mass spectral fragmentation patterns of the different classes of natural organic dyestuffs, which in the ideal case allow the identification of the dyestuff actually used, and thereby provide a key to the better characterisation and understanding of historical objects dyed with natural organic dyestuffs. Figure LC-MS allows characterisation of natural dyestuff constituents: the MS spectrum of alizarin is superimposed over a photo of a textile coloured using this red dye  相似文献   

13.
A preliminary investigation using gas chromatography–mass spectrometry (GC–MS) to analyze the nicotine contained in tobacco leaves was carried out. Nicotine is an alkaloid and tobacco leaves was extracted with methanol and determined by GC–MS. The detection limit for nicotine was at the ppm level for non selective monitoring and the nanogram level for selective detection. This is a simple chromatography–mass spectrometry method for the analysis of nicotine in tobacco leave. Compared to other currently utilized methods for the detection of nicotine in tobacco leaves, the GC–MS provided advantages of high sensitivity, nicotine specific detection and lower instrumentation cost.  相似文献   

14.
Gas chromatography (GC) data (linear retention indices and relative areas) and mass spectra (most representative m/z fragments) of 12 reducing trisaccharides as trimethylsilyl oximes (TMSO) and four non-reducing as trimethylsilyl (TMS) ethers have been described for the first time and related to their structural features. Some trends have been observed: earlier elution of non-reducing compounds and fructotrioses; aldotrioses bearing the reducing end with link in position 6 showing the highest retention. Abundance of several fragment ions and their ratios were useful for trisaccharide characterization; some of these features seem to be useful for the characterization of new trisaccharides.  相似文献   

15.
A quantitative method for the determination of organic acids in atmospheric particles is developed. The method couples a derivatisation step (thermally assisted hydrolysis and methylation) and a Curie point pyrolyser as a thermal desorption technique and gas chromatography–mass spectrometry (CPP-GC–MS). Among the reagents tested (tetramethylammonium hydroxide (TMAH), tetramethylammonium acetate (TMAAc) and phenyltrimethylammonium hydroxide (TMPAH)), the best performance was found using TMAAc as a derivatisation reagent for the reaction time of 4 s at 510 °C as heating temperature. Calibration was performed for a series of fatty acids (FA), dicarboxylic acids (DCA) and terpenoic acids (TA) under these conditions. Coefficients of determination (R2) were between 0.94 and 0.98. Limits of detection (LOD) were in the nanogram-range between 0.1 and 3.6 ng. The method is applied on atmospheric particle samples to obtain the quantification reproducibility and quantification limits. Reproducibility was determined in terms of relative standard deviations (RSD) for ambient aerosol samples collected by a high-volume-sampler (HVS, RSD = 6–45%, n = 10) and a Berner impactor (BI, RSD = 5–34%, n = 10). Based on 24 h sampling time the developed method enables quantification of all three classes of acids for both sampling techniques. Calibration data and presented volume concentrations are compared with literature data. A comparison with an off-line methylation-GC–MS using BF3 as a derivatisation reagent and capillary electrophoresis coupled mass spectrometry (CE-MS) showed a good agreement. Minimal sample preparation is the main advantage of the developed method. Depending on the sensitivity requirements the present method can be a fast and simple alternative to GC–MS techniques with conventional sample preparation steps for semi-volatile organic acids.  相似文献   

16.
Analytical pyrolysis combined with gas chromatography and mass spectrometry (Py-GC–MS) is a relatively rapid (1–3 h) method for the investigation of polymers. Various wood tissues from transgenic poplar clones and from control samples have been subjected to a screening test by Py-GC–MS. Pyrolysis products from lignin- and carbohydrate-derived pyrolysis products were subjected to multivariate principal component analysis (PCA). The first three PC accounting for 39–72% of the total variance in the original data set could be attributed to vinyl products from lignin and levoglucosan from cellulose. Samples with gene construct rbcs-rol C were only discriminated by plotting PC1 versus PC3 using the whole data set. However, the wood from trees containing gene construct 35 S-rol C were discriminated in all examined models indicating significant impacts during biosynthesis of the wood. One sample within the data set was further clustered because it turned out that this tree died off after two vegetation periods.  相似文献   

17.
A simple and efficient method was developed for analysis of 28 insecticides (organochlorines, organophosphates and synthetic pyrethroids) in curry leaves (Murraya koenigii L.). The extraction of the analytes was carried out with acidified acetonitrile and purification with magnesium sulphate, primary secondary amine along with graphitised carbon black to remove excess chlorophyll content in curry leaves. Acetonitrile extracts were changed into hexane + acetone (9 + 1) and hexane + toluene (9 + 1) in the final step. In another method ethyl acetate was used for extraction and purification was carried out as above. The analytes in the samples were determined by gas chromatography (GC) and confirmed by gas chromatography–mass spectrometry (GC–MS). Use of ethyl acetate increased the recovery of the analytes, but co-extractive interference led to higher GC maintenance. Acidified acetonitrile was found to be a better extraction solvent compared with ethyl acetate. The use of hexane:toluene (9:1) as exchange solvent increased the recovery of organochlorine insecticides compared with hexane:acetone (9:1). The limit of quantification (LOQ) of the method was 0.01 mg kg?1 for organochlorine insecticides and 0.05 mg kg?1 for organophosphates and synthetic pyrethroids. The recoveries of organochlorines were within 70.36–82.45%; organophosphates, 82.54–90.93% and synthetic pyrethroids, 88.45–90.71% at the LOQ level. The method developed was found suitable for analysis of real samples of curry leaves. The pesticides detected in curry leaves collected from the retail market were mainly organophosphates and synthetic pyrethroids.  相似文献   

18.
Benzene is classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC). The risk assessment for benzene can be performed by monitoring environmental and occupational air, as well as biological monitoring through biomarkers. The present work developed and validated methods for benzene analysis by GC/MS using SPME as the sampling technique for ambient air and breath. The results of the analysis of air in parks and avenues demonstrated a significant difference, with average values of 4.05 and 18.26 μg m−3, respectively, for benzene. Sampling of air in the occupational environment furnished an average of 3.41 and 39.81 μg m−3. Moreover, the correlations between ambient air and expired air showed a significant tendency to linearity (R 2 = 0.850 and R 2 = 0.879). The results obtained for two groups of employees (31.91 and 72.62 μg m−3) presented the same trend as that from the analysis of environmental air.  相似文献   

19.
Animal-derived products are particularly vulnerable to contamination by volatile organic compounds (VOCs). These lipophilic substances, which are generated by an increasing number of sources, are easily transferred to the atmosphere, water, soil, and plants. They are ingested by livestock and become trapped in the fat fraction of edible animal tissues. The aim of this work was to determine the occurrence, risk for human health and entryways of benzenic and halogenated VOCs (BHVOCs) in meat products, milks and sea foods using gas chromatography– mass spectrometry (GC–MS) techniques. In the first part, the occurrence and levels of the BHVOCs in animal products were studied. One muscle and three fat tissues were analysed by GC–Quad/MS in 16 lambs. Of 52 BHVOCs identified, 46 were found in the three fat tissues and 29 in all four tissues, confirming that VOCs are widely disseminated in the body. Twenty-six BHVOCs were quantified in fat tissues, and risk for consumer health was assessed for six of these compounds regulated by the US Environmental Protection Agency (EPA). The BHVOC content was found to be consistent with previous reports and was below the maximum contaminant levels set by the EPA. In the second part, the performance of GC×GC–TOF/MS for comprehensively detecting BHVOCs and showing their entryways in animal-derived food chains was assessed. Meat, milk and oysters were analysed by GC–Quad/MS and GC×GC–TOF/MS. For all these products, at least a 7-fold increase in the contaminants detected was achieved with the GC×GC–TOF/MS technique. The results showed that the production surroundings, through animal feeding or geographical location, were key determinants of BHVOC composition in the animal products.  相似文献   

20.
Contamination by Brettanomyces is a frequent problem in many wineries that has a dramatic effect on wine aroma and hence its quality. The yeast Brettanomyces/Dekkera is involved in the formation of three important volatile ethylphenols—4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol—that transmit an unpleasant aroma to wine that has often been described as ‘medicinal’, ‘stable’ or ‘leather’. This study proposes an in situ derivatisation and headspace solid-phase microextraction– gas chromatography coupled to mass spectrometry method to determine the three ethylphenols in red Brettanomyces-tainted wines. The most important variables involved in the derivatisation (acetic anhydride and base concentration) and the extraction (extraction temperature and salt addition) processes were optimised by experimental design. The optimal conditions using 4 mL of wine in 20-mL sealed vials were 35 μL of acetic anhydride per millilitre of wine, 1 mL of 5.5% potassium carbonate solution and 0.9 g of sodium chloride and the extraction was performed with a divinylbenzene–carboxen–poly(dimethylsiloxane) fibre at 70 °C for 70 min. Then, the performance characteristics were established using wine samples spiked with the ethylphenols. For all compounds, the detection limits were below the odour threshold reported in the literature and they were between 2 and 17 μg L−1 for 4-ethylguaiacol and 4-ethylphenol, respectively. Intermediate precision (as relative standard deviation) was acceptable, with values ranging from 0.3 to 12.1%. Finally, the method was applied in the analysis of aged Brettanomyces-tainted wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号