首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label-free and DNAzyme-based strategy to detect DNA ligase activity. This novel strategy relies on the ligation-trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin-DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40?U?mL(-1) and a detection limit of 0.2?U?mL(-1). Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a "split DNA machine" to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01?U?mL(-1).  相似文献   

2.
The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label‐free and DNAzyme‐based strategy to detect DNA ligase activity. This novel strategy relies on the ligation‐trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin‐DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL?1 and a detection limit of 0.2 U mL?1. Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a “split DNA machine” to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL?1.  相似文献   

3.
A homogeneous hemin/G-quadruplex DNAzyme (HGDNAzyme) based turn-on chemiluminescence aptasensor for interferon-gamma (IFN-γ) detection is developed, via dynamic in-situ assembly of luminol functionalized gold nanoparticles (lum-AuNPs), DNA, IFN-γ and hemin. The G-quadruplex oligomer of the HGDNAzyme was split into two halves, which was connected with the complementary sequence of P1 (IFN-γ-binding aptamer) to form the oligonucleotide P2. P2 hybridized with IFN-γ-binding aptamer and meanwhile assembled onto lum-AuNPs through biotin–streptavidin specific interaction. When IFN-γ was recognized by aptamer, P2 was released into the solution. The two lateral portions of P2 combined with hemin to yield the catalytic hemin/G-quadruplex DNAzyme, which amplified the luminol oxidation for a turn-on chemiluminescence signaling. Based on this strategy, the homogeneous aptasensor enables the facile detection of IFN-γ in a range of 0.5–100 nM. Moreover, the aptasensor showed high sensitivity (0.4 nM) and satisfactory specificity, pointing to great potential applications in clinical analysis.  相似文献   

4.
该文基于酶辅助靶标循环信号放大策略构建了用于黄曲霉毒素B1(AFB1)高灵敏检测的化学发光适体传感器。以G-四链体/氯化血红素DNA酶为信号分子设计了免标记的适体探针H1-S1和发夹探针H2。适体探针结合目标AFB1,在核酸外切酶I辅助下,触发靶标循环反应产生发夹H1。发夹H1与H2杂交,释放出完整的G-四链体序列,并进一步与氯化血红素结合形成G-四链体/氯化血红素DNA酶。DNA酶通过催化氧化鲁米诺-H2O2化学发光体系产生化学发光信号,实现AFB1的放大检测。在最优实验条件下,化学发光强度与AFB1质量浓度的对数在0.001~100 ng/mL范围内呈良好的线性关系,相关系数(r2)为0.9955,检出限为0.93 pg/mL,回收率为93.7%~107%。该适体传感器操作简单、灵敏度高、特异性好,在黄曲霉毒素污染检测方面具有良好的应用前景。  相似文献   

5.
《中国化学快报》2022,33(8):4096-4100
Aflatoxin B1 (AFB1) is one of the most common mycotoxins that threatens human health. As single-stranded oligonucleotides with high affinity and specificity, aptamers have incomparable effect on the targeted detection of AFB1. Herein, after 11 rounds of selection and analysis using a modified affinity chromatography-based SELEX strategy, the truncated 37 nt aptamer AF11–2 was successfully obtained. The aptamer shows good detection performance for AFB1, and can sensitively detect AFB1 in the range of 100–1000 nmol/L, with a detection limit of 42 nmol/L. In the detection of pretreated edible peanut oil samples, AF11–2 aptamer also showed a high recovery rate and good stability for AFB1, and achieved satisfactory results. In addition, AF11–2 aptamer can significantly enhance the fluorescence ability of AFB1, which is not available in traditional Afla17–2–3 aptamer. After molecular docking analysis, it was found that AF11–2 and Afla17–2–3 had different nucleotide binding sites for AFB1. Afla17–2–3 binds to the carbonyl O of AFB1, while AF11–2 binds to the pyrrolic O of AFB1, which may be the main reason that AF11–2 can enhance the fluorescence of AFB1.  相似文献   

6.
A novel colorimetric aptasensor was developed for thrombin detection with high sensitivity and specificity. The assay takes the advantage of Au nanoparticles-DNAzyme as a dual catalytic system for signal amplification. Au nanparticles were modified with peroxidase mimicking DNAzyme sequence as well as thrombin binding aptamer. And then the thrombin binding aptamer hybridized with its complementary sequence which was immobilized on the surface of the magnetic nanoparticles to construct the colorimetric aptasensor. In the presence of thrombin, the target-induced displacement takes place, resulting in the dissociation of the aptasensor. The DNAzyme functioned Au NPs are released due to the combine ability of thrombin binding aptamer with thrombin. The released Au NPs are capable of catalyzing the colorless 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid(ABTS) conversion into a blue-green product by H2O2-mediated oxidation, thus can amplify the colorimetric readout signals of thrombin detection. Such a device can serve as a novel selectivity sensor for thrombin with a detection limit of 0.6 nmol/L.  相似文献   

7.
In this paper, we report a novel and sensitive optical sensing protocol for thrombin detection based on magnetic nanoparticles (MNPs) and thrombin aptamer, employing split HRP-mimicking DNAzyme halves as its sensing element, which can catalyze the H2O2-mediated oxidation of the colorless ABTS into a blue-green product. A single nucleotide containing the recognition element and sensing element is utilized in our protocol. The specific recognition of thrombin and its aptamer leads to the structure deformation of the DNA strands and causes the split of the DNAzyme halves. Therefore, the decrease of absorption spectra can be recorded by the UV–visible Spectrophotometer. DNA-coated MNPs are utilized to separate the interferential materials from the analyst, thus making this assay can be applied in the detection of thrombin in complex samples, such as human plasma. This original, sensitive and cost-effective assay showed favorable recognition for thrombin. The absorbance signals with the concentration of thrombin over a range from 0.5 to 20 nM and the detection limit of thrombin was 0.5 nM. The controlled experiments showed that thrombin signal was not interfered in the presence of other co-existence proteins.  相似文献   

8.
G-quadruplex containing peroxidase DNAzyme is a complex of hemin and a single-stranded guanine-rich DNA (hemin-binding DNA aptamer), which is used as an attractive catalytic label for biosensing recently. Therein, the hemin-binding DNA aptamer contains four GGG repeats and can fold into a G-quadruplex structure. In this paper, we have developed a new split mode to divide the hemin-binding DNA aptamer into two parts: one possesses three GGG repeats, and another part possesses one GGG repeat, namely, the 3:1 split mode. The combination of G-quadruplex and hemin binding could be used as a sensitive probe for the identification of single nucleotide polymorphisms by giving a color signal, visible to the naked eye at room temperature. The G-quadruplex containing peroxidase DNAzyme utilizes the 3:1 split mode and can be directly used for the identification of SNPs with a detection limit in the nM range when the matching length of the probe is short enough. When the matching length of the probe is relatively long, another method adding competition sequences to the probe could also operate effectively for the identification of SNPs. The results also suggested that we could detect the signal when the mutation sample was only 5% in the total target DNA with a competition strategy.  相似文献   

9.
A hemin‐binding DNA G‐quadruplex (also known as a hemin aptamer or DNAzyme) has been previously reported to be able to enhance the peroxidase activity of hemin. In this work, we described a DNAzyme structure that had an effector‐recognizing part appearing as a single stranded DNA linkage flanked by two split G‐quadruplex halves. Hybridization of the single stranded part in the enzyme with a perfectly matched DNA strand (effector) formed a rigid DNA duplex between the two G‐quadruplex halves and thus efficiently suppressed the enzymatic activity of the G‐quadruplex/hemin complex, while the mismatched effector strand was not able to regulate the peroxidase activity effectively. With 2,2′‐azinobis(3‐ethylbenzthiazoline)‐6‐sulfonic acid (ABTS) as an oxidizable substrate, we were able to characterize the formation of the re‐engineered G‐quadruplex/hemin complex and verify its switchable peroxidase activity. Our results show that the split G‐quadruplex is an especially useful module to design low‐cost and label‐free sensors toward various biologically or environmentally interesting targets.  相似文献   

10.
The combination of high selectivity of aptamer with the peroxidase-mimicking property of DNAzyme has presented considerable opportunities for designing colorimetric aptasensor for detection of ochratoxin A (OTA). The activities of both aptamer (as biorecognition element) and DNAzyme (as signal amplification element) are blocked via base pairing in the hairpin structure. Hybridization chain reaction (HCR) between two hairpin DNAs was employed to further improve the sensitivity of this method. The presence of OTA triggers the opening of the hairpin structure and the beginning of HCR, which results in the release of many DNAzyme, and generates enhanced colorimetric signals, which is correlated to the amounts of OTA with linear range between 0.01 to 0.32 nM, and the limit of detection is 0.01 nM under optimal conditions. OTA in yellow rice wine and wheat flour samples was also detected using this method. We demonstrate that a new colorimetric method for the detection of OTA has been established, which is simple, easy to conduct, label-free, sensitive, high throughput, and cost-saving.  相似文献   

11.
Aflatoxin B1 (AFB1) is one of the mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, and it causes contamination in foods and great risk to human health. Simple sensitive detection of AFB1 is important and demanded for food safety and quality control. Aptamers can specifically bind to targets with high affinity, showing advantages in affinity assays and biosensors. We reported an aptamer structure-switch for fluorescent detection of aflatoxin B1 (AFB1), using a label-free aptamer, a fluorescein (FAM)-labeled complementary strand (FDNA), and a quencher (BHQ1)-labeled complementary strand (QDNA). When AFB1 is absent, these three strands assemble into a duplex DNA structure through DNA hybridization, making FAM close to BHQ1, and fluorescence quenching occurs. In the presence of AFB1, the aptamer binds with AFB1, instead of hybridizing with QDNA. Thus, FAM is apart from BHQ1, and fluorescence increases with the addition of AFB1. This assay allowed detection of AFB1 with a detection limit of 61 pM AFB1 and a dynamic concentration range of 61 pM to 4 μM. This aptamer-based method enabled detection of AFB1 in complex sample matrix (e.g., beer and corn flour samples).  相似文献   

12.
A simple aptamer molecular beacon assay for rapid detection of aflatoxin B1 (AFB1) was achieved. AFB1-binding induced formation of a hairpin structure and closeness of fluorophore label and quencher probe, causing fluorescence decrease.  相似文献   

13.
《中国化学快报》2020,31(7):1982-1985
Fluorescence anisotropy (FA) assay in homogenous solution is simple, sensitive and reproducible. Here, we reported an aptamer structure switch FA assay for detection of aflatoxin B1 (AFB1), one of the most toxic mycotoxins, by using tetramethylrhodamine (TMR)-labeled aptamer probe and its complementary DNA (cDNA) with tandem G bases extension, to meet the demand in sensitive and selective detection of AFB1. The hybridization of aptamer and cDNA drew TMR close to the repeated guanine (G) bases, and a high FA value was induced due to TMR-G interaction and restricted local rotation of TMR. In the presence of AFB1, aptamer bound to AFB1 instead of the cDNA due to competition. Thus, the TMR-G interaction was eliminated, and FA value of TMR decreased. This assay enabled the detection of AFB1 with detection limit of 125 pmol/L and dynamic range from 125 pmol/L to 31.2 nmol/L  相似文献   

14.
We report a paper‐based aptasensor platform that uses two reaction zones and a connecting bridge along with printed multifunctional bio/nano materials to achieve molecular recognition and signal amplification. Upon addition of analyte to the first zone, a fluorescently labelled DNA or RNA aptamer is desorbed from printed graphene oxide, rapidly producing an initial fluorescence signal. The released aptamer then flows to the second zone where it reacts with printed reagents to initiate rolling circle amplification, generating DNA amplicons containing a peroxidase‐mimicking DNAzyme, which produces a colorimetric readout that can be read in an equipment‐free manner or with a smartphone. The sensor was demonstrated using an RNA aptamer for adenosine triphosphate (a bacterial marker) and a DNA aptamer for glutamate dehydrogenase (Clostridium difficile marker) with excellent sensitivity and specificity. These targets could be detected in spiked serum or feacal samples, demonstrating the potential for testing clinical samples.  相似文献   

15.
Systematic evolution of ligands by exponential enrichment is a traditional approach to select aptamer, which has a great potential in biosensing field. However, chemical modifications of DNA library or targets before selection might block the real recognition and binding sites between aptamers and their targets. In this study, a label‐ and modification‐free‐based in situ selection strategy was developed to overcome this limitation. The strategy is an attempt to screen bovine serum albumin aptamers according to the principle of electrophoretic mobility shift assay, and allowed single‐stranded DNA sequence to be fully exposed to interact with bovine serum albumin which was mixed with the agarose gel beforehand. After eight rounds of selection, specific aptamer with low dissociation constant (Kd) value of 69.44 ± 7.60 nM was selected and used for subsequent establishment of fluorescence biosensor. After optimization, the optimal aptasensor exhibited a high sensitivity toward bovine serum albumin with a limit of detection of 0.24 ng/mL (linear range from 1 to 120 ng/mL). These results indicated that the label‐ and modification‐free‐based in situ selection strategy proposed in this work could effectively select specific aptamer to develop aptasensor for sensitive detection of bovine serum albumin or other targets in actual complicated samples.  相似文献   

16.
Li J  Yao QH  Fu HE  Zhang XL  Yang HH 《Talanta》2011,85(1):91-96
Horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme) attracts growing interest as an amplifying label for biorecognition and biosensing events, especially for DNA detection. However, in the traditional designs, one target molecule can only generate one HRP-DNAzyme, which limits the signal enhancement and thus its sensitivity. In this article, we propose an amplified and label-free colorimetric DNA detection strategy based on nicking endonuclease (NEase)-assisted activation of HRP-DNAzymes (NEAA-DNAzymes). This new strategy relies on the hairpin-DNAzyme probe and NEase-assisted target recycling. In the hairpin-DNAzyme probe, the HRP-DNAzyme sequence is protected in a “caged” inactive structure, whereas the loop region includes the target complementary sequence. Upon hybridization with target, the beacon is opened, resulting in the activation of the HRP-DNAzyme. Meanwhile, upon formation of the duplex, the NEase recognizes a specific nucleotide sequence and cleaves the hairpin-DNAzyme probe into two fragments. After nicking, the fragments of the hairpin-DNAzyme probe spontaneously dissociate from the target DNA. Amplification is accomplished by another hairpin-DNAzyme probe hybridizing to the released intact target to continue the strand-scission cycle, which results in activation of numerous DNAzymes. The activated HRP-DNAzymes generate colorimetric or chemiluminescence readout signals, thus providing the amplified detection of DNA. The detection limit of the colorimetric method is 10 pmol/L, which are three orders of magnitude lower than that without NEase. In addition, the detection limit of the chemiluminescence method is 0.2 pmol/L. Meanwhile, this strategy also exhibits high discrimination ability even against single-base mismatch.  相似文献   

17.
利用对苯二甲酸铜(Cu-TPA)能产生强的电化学信号设计了一种灵敏的电化学生物传感器, 并将其用于测定黄曲霉毒素B1(AFB1). 信号探针中的Cu-TPA含有可产生电化学信号的Cu(Ⅱ), 当加入一定量的AFB1后, AFB1与探针中特定的适配体结合, 使信号探针脱落, 电化学信号降低. 根据电化学信号值的变化实现了对AFB1的检测. 在最佳条件下, 该传感器的检出限为4.2×10 -6 ng/mL(S/N=3), 线性范围为10 -5~10 ng/mL. 将该传感器用于啤酒中AFB1的检测, 回收率为95%~106%.  相似文献   

18.
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.  相似文献   

19.
Electrocatalysis of redox enzymes shows wide application for biosensing. DNAzymes exhibiting specific catalytic activities have aroused great interest recently. However, there are few studies on the electrocatalysis between DNAzyme and electron mediator. In this paper, based on the electrocatalysis of methylene blue (MB) and horseradish peroxidase mimicking DNAzyme (HRP‐DNAzyme), an amplified electrochemical biosensor for the detection of adenosine triphosphate (ATP) was designed. In the present system, by means of the ATP‐aptamer interaction, two guanine‐rich DNA sequences, one of which was labeled with MB at the 5′ end, were assembled on the gold electrode. In the presence of K+ and hemin, the guanine‐rich DNA sequences transferred to HRP‐DNAzyme. The conformational change of the structure resulted in the approaching of MB and HRP‐DNAzyme which made the electrocatalytic process between MB and HRP‐DNAzyme possible. We used cyclic voltammetry and electrochemical impedance spectroscopy to study the electrocatalytic process. The system was therefore utilized for amplified detection of ATP without imposing any new constraints to the platform which showed satisfactory result.  相似文献   

20.
Two polymers were computationally designed with affinity to two of the most abundant mycotoxins aflatoxin B1 (AFB1) and ochratoxin A (OTA) for application in the ToxiQuant T1 System. The principle of quantification of AFB1 and OTA using the ToxiQuant T1 instrument comprised of a fluorimetric analysis of mycotoxins adsorbed on the polymer upon exposure to UV light. High affinity of the developed resins allowed the adsorption of both toxins as discrete bands on the top of the cartridge with detection limit as low as 1 ng quantity of mycotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号