首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and testing of a new and low-cost experimental setup used for vacuum-assisted headspace solid-phase microextraction (Vac-HSSPME) is reported here. The device consists of a specially designed O-ring seal screw cap offering gas-tight seal to commercially available headspace vials. The new polytetrafluoroethylene (PTFE) cap was molded by a local manufacturer and had a hole that could tightly accommodate a septum. All operations were performed through the septum: air evacuation of the sampler, sample introduction and HSSPME sampling. The analytical performance of the new sampler was evaluated using 22 mL headspace vials with 9 mL water samples spiked with polychlorinated biphenyls (PCBs). Several experimental parameters were controlled and the optimized conditions were: 1000 rpm agitation speed; 30 min extraction time; 40 °C sampling temperature; polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. The lack of accurate Henry's law constant (KH) values and information regarding how they change with temperature was a major limitation in predicting the phase location of evaporation resistance during Vac-HSSPME. Nevertheless, the combined effects of system conditions indicated the increasing importance of gas phase resistance with increasing degree of PCBs chlorination. Stirring enhancements were not recorded for the higher chlorinated PCBs suggesting that the hyperhydrophobic gas/water interface was the preferred location for these compounds. Analytically, the developed method was found to yield linear calibration curves with limits of detection in the sub ng L−1 level and relative standard deviations ranging between 5.8 and 14%. To compensate for the low recoveries of the higher chlorinated PCB congeners in spiked river water the standard addition methodology was applied. Overall, the compact design of the new and reusable sample container allows efficient HSSPME sampling of organic analytes in water within short extraction times and at low sampling temperatures compared to other published HSSPME methods.  相似文献   

2.
A new headspace solid-phase microextraction (HSSPME) procedure carried out under vacuum conditions is proposed here where sample volumes commonly used in HSSPME (9 mL) were introduced into pre-evacuated commercially available large sampling chambers (1000 mL) prior to HSSPME sampling. The proposed procedure ensured reproducible conditions for HSSPME and excluded the possibility of analyte losses. A theoretical model was formulated demonstrating for the first time the pressure dependence of HSSPME sampling procedure under non equilibrium conditions. Although reduced pressure conditions during HSSPME sampling are not expected to increase the amount of analytes extracted at equilibrium, they greatly increase extraction rates compared to HSSPME under atmospheric pressure due to the enhancement of evaporation rates in the presence of an air-evacuated headspace. The effect is larger for semivolatiles whose evaporation rates are controlled by mass transfer resistance in the thin gas film adjacent to the sample/headspace interface. Parameters that affect HSSPME extraction were investigated under both vacuum and atmospheric conditions and the experimental data obtained were used to discuss and verify the theory. The use of an excessively large headspace volume was also considered. The applicability of Vac-HSSPME was assessed using chlorophenols as model compounds yielding linearities better than 0.9915 and detection limits in the low-ppt level. The repeatability was found to vary from 3.1 to 8.6%.  相似文献   

3.
4.
For the first time, plastic pellets, a low-cost and easy to reach industrial raw material, are reported as an efficient sorbent material for the laboratory extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental waters. The proposed methodology, termed plastic pellets sorptive extraction (P2SE), consisted of a two-step procedure whereby target analytes were initially adsorbed onto the surface of three low-density polyethylene (LDPE) pellets and then desorbed using microliters of an organic solvent. Interphase mass transfer was greatly accelerated by means of vortex agitation. Organic extracts were analyzed by means of liquid chromatography-fluorescence detection. Different experimental parameters were controlled and the optimum conditions found were: three LDPE pellets (∼80 mg) added to 20 mL aqueous sample (20% w:v NaCl) followed by vortex agitation at 3000 rpm; for desorption, the three LDPE pellets were immersed in 100 μL of acetonitrile and the mixture was shaken at 3000 rpm for 5 min using the vortex agitator. The calculated calibration curves gave high levels of linearity yielding coefficients of determination (r2) greater than 0.9913. The precision of the proposed method was found to be good and the limits of the detection were calculated in the low ng L−1 level. Matrix effects were determined by applying the proposed method to spiked river water, treated municipal wastewater and seawater samples. To compensate for the low recoveries of the more hydrophobic PAHs in spiked effluent wastewater and seawater samples the standard addition methodology was applied. The proposed method was applied to the determination of target pollutants in real seawater samples using the standard addition method. Overall, the performance of the proposed P2SE method suggests that the use of inexpensive and easy to reach sorbent materials for extracting analytes in the laboratory merits more intensive investigation.  相似文献   

5.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

6.
In this work, sorbent-attached membrane funnel-based spray ionization mass spectrometry was explored for quantitative analysis of anti-diabetic drugs spiked in human plasma. C18-attached membrane funnel was fabricated for in situ extraction and clean-up to alleviate matrix suppression effect in the ionization process. Repaglinide was used as a target analyte of anti-diabetic drugs. Under optimal working conditions, good linearity (R2 > 0.99) was obtained in the concentration range of 1–100 ng mL−1. The method detection limit of target drugs spiked in the human plasma was around 0.30 ng mL−1. Through the application of an isotope-labeled internal standard, the signal fluctuation caused by residual background matrices was largely alleviated and the precision of measurement (RSD) was below 15%. The recovery of repaglinide for 5, 25, and 100 ng mL−1 of spiked human plasma matrixes ranged from 87% to 112%. The developed method was successfully applied to determine repaglinide in plasma volunteers who orally received a dose of drug association. Our results demonstrated that membrane funnel-based spray is a simple and sensitive method for rapid screening analysis of complex biological samples.  相似文献   

7.
Jin J  Zhang Z  Li Y  Qi P  Lu X  Wang J  Chen J  Su F 《Analytica chimica acta》2010,678(2):183-188
The enrichment of polycyclic aromatic hydrocarbons (PAHs) in water samples with magnesium oxide (MgO) microspheres was evaluated, and four 3-5-ring PAHs were used as probes to validate the adsorption capacity of the material. Factors affecting the recovery of PAHs were investigated in detail, including the type and concentration of organic modifiers, elution solvents, particle size of the adsorbent, volume and flow rate of the samples, and the lifetime of MgO cartridges. The recoveries of four PAHs extracted from 20 mL of seawater spiked with standard PAHs ranged from 85.8% to 102.0% under the optimised conditions. The limits of detection varied from 1.83 ng L−1 to 16.03 ng L−1, indicating that the analytical method was highly sensitive. Additionally, the proposed method was successfully used to enrich PAHs in seawater. Compared to conventional methods, the proposed method consumed less organic modifier (5% acetone), and cheaper sorbents with comparable extraction efficiency were employed.  相似文献   

8.
Solid-phase microextraction (SPME) coupled to ultrasonic extraction was evaluated for extracting trace amounts of two agrochemical fungicides, vinclozolin and dicloran, in soil samples. Extraction was performed following two experimental approaches prior to the submission of the aqueous extracts to SPME-GC analysis. In the first approach, extraction involved sample homogenization with a water solution containing 5% (v/v) acetone and centrifugation prior to fiber extraction. In the second approach, the extraction of the fungicides from the soil samples was conducted using acetone as organic solvent which was then diluted with water to give a 5% (v/v) content. The pesticides were isolated with fused silica fiber coating with 85 μm polyacrylate. Parameters that affect both the extraction of the fungicides by the soil samples and the trapping of the analytes by the fiber were investigated and their impact on the SPME-GC-MS was studied. The procedures with respect to repeatability and limits of detection were evaluated by soil spiked with both analytes. Repeatability was between 5.6 and 14.2% and the limits of detection were 2-13 ng g−1. The efficiency of acetone/SPME was generally better than that for water/SPME procedure showing good linearity (R2>0.99) with coefficient variations below 9%, recoveries higher than 91% and limits of detection between 2 and 3 ng g−1. Finally, the recoveries obtained with acetone/SPME procedure were compared with the conventional liquid-liquid extraction using real soil samples. The acetone/SPME method was shown to be an inexpensive, fast and simple preparation method for the determination of target analytes at low nanogram per gram levels in soils.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants in both living and working environments. The aim of this study was the development of a headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry (HS-SPME/GC-IDMS) method for the simultaneous quantification of 13 PAHs in urine samples. Different parameters affecting PAHs extraction by HS-SPME were considered and optimized: type/thickness of fiber coatings, extraction temperature/time, desorption temperature/time, ionic strength and sample agitation. The stability of spiked PAHs solutions and of real urine samples stored up to 90 days in containers of different materials was evaluated. In the optimized method, analytes were absorbed for 60 min at 80 °C in the sample headspace with a 100 μm polydimethylsiloxane fiber. The method is very specific, with linear range from the limit of quantification to 8.67 × 103 ng L−1, a within-run precision of <20% and a between-run precision of <20% for 2-, 3- and 4-ring compounds and of <30% for 5-ring compounds, trueness within 20% of the spiked concentration, and limit of quantification in the 2.28-2.28 × 101 ng L−1 range. An application of the proposed method using 15 urine samples from subjects exposed to PAHs at different environmental levels is shown.  相似文献   

10.
Summary An exhaustive study of the behaviour in supercritical fluid extraction of eight PAHs in real samples of soil compared to spiked samples in silica has been carried out. The presence of a modifier is mandatory for quantitative extraction of the native analytes, but is unnecessary in spiked samples. The type and volume of modifier to be added and the sample-modifier contact time were optimized and the influence of the particle size assessed.  相似文献   

11.
A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated using fast low pressure gas chromatography triple quadrupole tandem mass spectrometry (LP-GC/MS–MS). The method was based on a QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction with acetonitrile and dispersive solid-phase extraction (d-SPE) clean-up with zirconium-based sorbent prior to LP-GC/MS–MS analysis. The developed method was evaluated at 4 spiking levels and further validated by analysis of NIST Standard Reference Materials (SRMs) 1974B and 1947. Sample preparation for a batch of 10 homogenized samples took about 1 h/analyst, and LP-GC/MS–MS analysis provided fast separation of multiple analytes within 9 min achieving high throughput. With the use of isotopically labeled internal standards, recoveries of all but one analyte were between 70 and 120% with relative standard deviations less than 20% (n = 5). The measured values for both SRMs agreed with certified/reference values (72–119% accuracy) for the majority of analytes. The detection limits were 0.1–0.5 ng g−1 for PCBs, 0.5–10 ng g−1 for PBDEs, 0.5–5 ng g−1 for select pesticides and PAHs and 1–10 ng g−1 for flame retardants. The developed method was successfully applied for analysis of catfish samples from the market.  相似文献   

12.
Vacuum-assisted headspace solid-phase microextraction (Vac-HSSPME) is an emerging analytical technique, which further advances HSSPME by providing lower detection limits of analytes with poor volatility at shorter extraction times. This review discusses the theoretical aspects and possibilities of the Vac-HSSPME technique for analysis of environmental samples. Optimization of key parameters, currently available equipment and methods for quantification of organic pollutants in water and soil are considered. Key problems and limitations of the technique are discussed along with possible approaches for its future development. The technique has a well-developed theory, which could be used for modeling of the extraction process, faster method development, and optimization. Wider application of the technique is limited by the lack of automation, which, however, seems possible to develop and implement by manufacturers of commercial multi-purpose autosamplers for gas chromatography instruments. It has been shown that Vac-HSSPME allows decreasing cross-contamination of samples from the laboratory air, which is advantageous for identification and quantification of trace environmental pollutants. Simple equipment for the technique makes it possible to apply for on-site sample preparation and analysis of environmental samples.  相似文献   

13.
A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the scanning electron microscopy (SEM).The developed method was applied to the trace level extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample. In order to enhance the extraction efficiency and increase the partition coefficient of analytes, the stainless steel needle was cooled at 5 °C, while the sample solution was kept at 80 °C. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.002-0.01 ng mL−1. The relative standard deviations (R.S.D.) at a concentration level of 0.1 ng mL−1 were obtained between 7.54 and 11.4% (n = 6). The calibration curves of PAHs showed linearity in the range of 0.01-10 ng mL−1. The proposed method was successfully applied to the extraction of some selected PAHs from real-life water samples and the relative recoveries were higher than 90% for all the analytes.  相似文献   

14.
A low temperature microwave-assisted extraction method (MAE) is reported for the analysis of polycyclic aromatic hydrocarbons (PAHs) in airborne particulate matter (PM). The main parameters affecting the extraction efficiency (choice of extractants, microwave power, and extraction time) were investigated and optimized. The optimized procedure requires a 20 ml mixture of acetone:n-hexane (1:1) for extraction of PAHs in PM at 150 W of microwave energy (20 min extraction time). Clean-up of MAE extracts was not found to be necessary. The optimized method was validated using two different SRM (1648-urban particulate matter and 1649a, urban dust). The results obtained are in good agreement with certified values. PAHs recoveries for both reference materials were between 79 and 122% with relative standard deviation ranging from 3 to 21%. Detection limits were determined based on blank determination using two kinds of quartz filter substrates (n = 10), which ranged from 0.001 (0.03) ng m−3 (pg/μg) for B(k)Ft to 1.119 (37.3) for Naph in ng m−3 (pg/μg), respectively. The repeatability and day-to-day reproducibility obtained in this study were in the range of 4-16 and 3-25% for spiked standards and SRM 1649, respectively. The optimized and validated MAE technique was applied to the extraction of PAHs from a set of real world PM samples collected in Singapore. The sum of particulate-bound PAHs in outdoor PM ranged from 1.05 to 3.45 ng m−3 while that in indoor PM (cooking emissions) ranged from 27.6 to 75.7 ng m−3, respectively.  相似文献   

15.
A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R2) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng–20 μg mL−1 was 0.9922, and the measured limits of detection (LOD) was 1 ng ml−1. In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg−1 were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated.  相似文献   

16.
A new method of the determination polycyclic aromatic hydrocarbons (PAHs) in water samples was developed by continuous-flow microextraction (CFME) coupled with gas chromatography-mass spectrometry (GC-MS). In this experiment, 15 mL sample solution with no salt-added was flowed at the rate of 1.0 mL min−1 through 3 μL benzene as extraction solvent. Under the optimal extraction conditions, the developed method was found to yield a linear calibration curve in the concentration range from 0.05 to 15 ng mL−1. Furthermore, the accuracy and repeatability of the method were good by calculating from water samples spiked at known concentrations of PAHs, and the recovery of optimal method was satisfactory. The results showed that CFME was an efficient preconcentration method for extraction of PAHs from spiked water samples.  相似文献   

17.
Llompart M  Li K  Fingas M 《Talanta》1999,48(2):451-459
We have investigated the use of headspace solid phase microextraction (HSSPME) as a sample concentration and preparation technique for the analysis of volatile and semivolatile pollutants in soil samples. Soil samples were suspended in solvent and the SPME fibre suspended in the headspace above the slurry. Finally, the fibre was desorbed in the Gas Chromatograph (GC) injection port and the analysis of the samples was carried out. Since the transfer of contaminants from the soil to the SPME fibre involves four separate phases (soil-solvent-headspace and fibre coating), parameters affecting the distribution of the analytes were investigated. Using a well-aged artificially spiked garden soil, different solvents (both organic and aqueous) were used to enhance the release of the contaminants from the solid matrix to the headspace. It was found that simple addition of water is adequate for the purpose of analysing the target volatile organic chemicals (VOCs) in soil. The addition of 1 ml of water to 1 g of soil yielded maximum response. Without water addition, the target VOCs were almost not released from the matrix and a poor response was observed. The effect of headspace volume on response as well as the addition of salt were also investigated. Comparison studies between conventional static headspace (HS) at high temperature (95 degrees C) and the new technology HSSPME at room temperature ( approximately 20 degrees C) were performed. The results obtained with both techniques were in good agreement. HSSPME precision and linearity were found to be better than automated headspace method and HSSPME also produced a significant enhancement in response. The detection and quantification limits for the target VOCs in soils were in the sub-ng g(-1) level. Finally, we tried to extend the applicability of the method to the analysis of semivolatiles. For these studies, two natural soils contaminated with diesel fuel and wood preservative, as well as a standard urban dust contaminated with polyaromatic hydrocarbons (PAHs) were tested. Discrimination in the response for the heaviest compounds studied was clearly observed, due to the poor partition in the headspace and to the slow kinetics of all the processes involved in HSSPME.  相似文献   

18.
The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L−1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L−1 for aqueous samples and in the range of 2.5-9.4 ng g−1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.  相似文献   

19.
In the present study, electrospun zeolitic imidazolate framework-8/poly(lactic acid) nanofibers were successfully synthesized and characterized as a potential nanosorbent for the pipette-tip micro-solid phase extraction of chlorpropham, pirimicarb, carbaryl, and methiocarb carbamate insecticides from environmental water samples. The extraction procedure was followed by gas chromatography/mass spectrometry separation and determination of the target analytes. All the effective parameters of the extraction procedure were optimized through the one variable at-a-time method. Thanks to the very simple extraction procedure as well as the application of electrospun nanofibers with high surface area, the four analytes were efficiently extracted with as lowest extraction times as practicable. Under the optimal conditions, the calibration plots of the analytes were obtained within broad linear dynamic ranges of 0.5 – 150 ng mL?1 for chlorpropham and pirimicarb plus 1.0 – 175 ng mL?1 for carbaryl and methiocarb, respectively. Besides, limits of detection as low as 0.2 and 0.15 ng mL?1 for chlorpropham and pirimicarb, respectively, as well as 0.5 ng mL?1 for carbaryl and methiocarb indicate the favorable sensitivity of the analytical procedure. The applicability of the developed method was evaluated by quantitative determination of the target analytes in four different environmental water samples. Relative recoveries higher than 88.0% shows the acceptable accuracy of the method in the quantitative determination of the four carbamate insecticides.  相似文献   

20.
Generic simple and sensitive universal enzyme immunoassay approach for the determination of small analytes has been developed to avert the problems associated with small molecule immobilization onto solid phases. The developed assay employed a heterogeneous non-competitive binding format. The assay used anti-analyte antibody coupled to polyacrylamide beads as a solid-phase and β-d-galactosidase enzyme-labeled analyte as a label. In this assay, the analyte in a sample was firstly incubated to react with an excess of the antibody-coupled beads, and then the unoccupied antibody binding sites were allowed to react with the enzyme-labeled analyte. Analyte bound to the antibody-coupled beads was separated by centrifugation, and the enzyme activity of the supernatant was measured spectrophotometrically at 420 nm, after reaction with 4-nitrophenyl-β-d-galactopyranoside as a substrate for the enzyme. The signal was directly proportional to the concentration of analyte in the sample. The optimum conditions for the developed assay were established and applied to the determination of tobramycin, as a representative example of the small analytes, in serum samples. The assay limit of detection was 10 ng mL−1 and the effective working range at relative standard deviation of ≤10% was 40-800 ng mL−1. The assay precisions were acceptable; the relative standard deviations were 4.36-5.17 and 5.62-7.40% for intra- and inter-assay precision, respectively. Analytical recovery of tobramycin spiked in serum ranged from 95.89 ± 4.25 to 103.45 ± 4.60%. The assay results correlated well with those obtained by high-performance liquid chromatography (r = 0.992). The assay described herein has great practical value in determination of small analytes because it is sensitive, rapid, and easy to perform in any laboratory. Although the assay was validated for tobramycin, however, it is also anticipated that the same methodology could be used for essentially any analyte for which a selective antibody exists, and an appropriate enzyme conjugate can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号