首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a new stir cake sorptive extraction (SCSE) using polymeric ionic liquid monolith as sorbent was prepared. The sorbent was obtained by in situ copolymerization of an ionic liquid, 1-allyl-3-methylimidazolium bis[(trifluoro methyl)sulfonyl]imide (AMII) and divinylbenzene (DB) in the presence of N,N-dimethylformamide. The influence of the content of ionic liquid and the porogen in the polymerization mixture on extraction performance was studied thoroughly. The physicochemical properties of the polymeric ionic liquid were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The usefulness of SCSE–AMIIDB was demonstrated by the enrichment of trace benzimidazole anthelmintics. Several parameters affecting the extraction efficiency were investigated, and under the optimized conditions, a simple and effective method for the determination of trace benzimidazoles residues in water, milk and honey samples was established by coupling SCSE–AMIIDB with high performance liquid chromatography/diode array detection (SCSE–AMIIDB–HPLC/DAD). Results indicated that the limits of detection (S/N = 3) for target compounds were 0.020–0.072 μg L−1, 0.035–0.10 μg L−1 and 0.026–0.076 μg L−1 in water, milk and honey samples, respectively. In addition, an acceptable reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSD) of less than 9% and 11%, respectively. Finally, the established AMII–SCSE–HPLC/DAD method was successfully applied for the determination of benzimidazoles residues in milk, honey and environmental water samples. Recoveries obtained for the determination of benzimidazole anthelmintics in spiking samples ranged from 70.2% to 117.6%, with RSD below 12% in all cases.  相似文献   

2.
A new, efficient, and environmental friendly hollow fiber liquid phase microextraction (HF-LPME) method based on supramolecular solvents was developed for extraction of five benzodiazepine drugs. The supramolecular solvent was produced from coacervation of decanoic acid aqueous vesicles in the presence of tetrabutylammonium (Bu4N+). In this work, benzodiazepines were extracted from aqueous samples into a supramolecular solvent impregnated in the wall pores and also filled inside the porous polypropylene hollow fiber membrane. The driving forces for the extraction were hydrophobic, hydrogen bonding, and π-cation interactions between the analytes and the vesicular aggregates. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) was applied for separation and determination of the drugs. Several parameters affecting the extraction efficiency including pH, hollow fiber length, ionic strength, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, the preconcentration factors were obtained in the range of 112–198. Linearity of the method was determined to be in the range of 1.0–200.0 μg L−1 for diazepam and 2.0–200.0 μg L−1 for other analytes with coefficient of determination (R2) ranging from 0.9954 to 0.9993. The limits of detection for the target benzodiazepines were in the range of 0.5–0.7 μg L−1. The method was successfully applied for extraction and determination of the drugs in water, fruit juice, plasma and urine samples and relative recoveries of the compounds studied were in the range of 90.0–98.8%.  相似文献   

3.
Present study developed a new method for the sensitive determination of pyrethroid insecticides with solid phase extraction in combination with high performance liquid chromatography and UV detector. SiO2 microspheres, a new SiO2 based material, was investigated for the enrichment ability and applicability as the solid phase extraction sorbent. Four pyrethroid pesticides such as fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were used as the target analytes. Parameters that maybe influence the extraction efficiency such as the eluent type and its volume, sample flow rate, sample pH, and the sample volume were optimized in detail, and the optimal conditions were as followed: sample volume, 100 mL; concentration of methanol, 30%; acetone volume, 5 mL; sample flow rate, 4.2 mL min−1; sample pH, 7. The experimental results indicated that there was good linearity in the concentration range of 0.1–50 μg L−1 except biphenthrin in the range of 0.05–25 μg L−1. The detection limits for fenpropathrin, cyhalothrin, fenvalevate and biphenthrin were in the range of 0.02–0.08 μg L−1. The intra-day and day to day precisions (RSDs, n = 6) were in the ranges of 2.6–4.4% and 5.3–7.2%, respectively. The method was validated with five real environmental water samples, and all these results proved that proposed method could be used as a good alternative for the routine analysis for such pollutants in environmental samples.  相似文献   

4.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

5.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

6.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

7.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

8.
Streptomycin (STR) and dihydrostreptomycin (DHSTR) are two of the most common aminoglycoside antibiotics used in veterinary medicine. The physicochemical properties of both substances, make their determination challenging. In the present study the development of methods based on ion-pair chromatography (IPC) and on hydrophilic interaction chromatography (HILIC), for the determination of the above mentioned aminoglycosides in the range of 100–1000 μg L−1 is described. The two methods were validated according to EU requirements for residues in food. The recoveries for the IPC method were 69.3% and 56.5% of STR and DHSTR, respectively, and for HILIC method 85.5% and 72.3%, respectively. The intra- and inter-day precision, studied at 100, 200 and 300 μg kg−1 levels in milk samples, gave %RSD ≤ 13 for both methods. LOQs for the HILIC method were 14 μg kg−1 for both analytes and for the IPC method were 109 and 31 μg kg−1, for STR and DHSTR, respectively. The sensitivity of the HILIC method is 80 and 210 times greater than that of the ICP method, for STR and DHSTR, respectively.  相似文献   

9.
A semi-automatic flow-based method for the simultaneous determination of 9 pharmaceuticals and 3 hormones in water samples in a single analytical run is proposed. The analytes were retained on a solid-phase extraction sorbent column and 1 μL of the eluate analysed by gas chromatography in combination with electron impact ionization mass spectrometry in the SIM mode. The sorbent used, Oasis-HLB, provided near-quantitative recovery of all analytes. The proposed method was validated with quite good analytical results including low limits of detection (0.01–0.06 ng L−1 for 100 mL of water) and good linearity (r2 > 0.993) throughout the studied concentration ranges. The method provided good accuracy (recoveries of 85–103%) and precision (between- and within-day RSD values less than 7%) in the determination of the pharmaceuticals and hormones in tap, river, pond, well, swimming pool and wastewater.  相似文献   

10.
A novel and highly selective method has been developed for the determination of aromatic primary amines by their conversion to dithiocarbamates by reaction with carbon disulphide, and then to isothiocyanates, which are volatile, by heating in the presence of a heavy metal ion. Zinc(II) was selected owing to its low toxicity and optimum yield of isothiocyanates. The latter were sampled by headspace-solid phase microextraction (HS-SPME) on divinylbenzene-carboxen-polydimethylsiloxane fibre, 50/30 μm. The HS-SPME procedure was optimized to provide adequate limits of detection in the analysis of aromatic amines in their real samples by gas chromatography with mass spectrometry (GC–MS) or flame ionization detection (GC–FID). The method gave rectilinear calibration graph, correlation coefficient and limit of detection, respectively, over the range 0.08–100 μg L−1, 0.9950–0.9990 and 25–240 ng L−1 in gas chromatography–mass spectrometry, and 0.01–10 mg L−1, 0.9910–0.9991 and 0.8–3.0 μg L−1 in gas chromatography–flame ionization detection. At two different levels, 10 and 40 μg L−1, the range of intra-day RSD was 3.7–8.5% (GC–MS) and 3.3–9.2% (GC–FID), respectively. The proposed method is simple and rapid, and has been applied to determine aromatic primary amines in the environmental waters, food samples of ice cream powder and soft drinks concentrate, and food colours. The intra-day RSD in the analysis of real samples by GC–MS was in the range 3.6–6.2%. The food/colour samples were found to contain elevated levels of aniline and 2-toluidine.  相似文献   

11.
Two kinds of mesoporous cellular foams (MCFs), including mesoporous silica materials (MCF-1) and phenyl modified mesoporous materials (Ph-MCF-1), were synthesized and for the first time used as fiber-coating materials for solid-phase microextraction (SPME). By using stainless steel wire as the supporting core, four types of fibers were prepared by sol–gel method and immobilized by epoxy-resin method. To evaluate the performance of the home-made fibers for SPME, seven brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS) and related compounds were selected as analytes. The main parameters that affect the extraction and desorption efficiencies, such as extraction temperature, extraction time, desorption time, stirring rate and ionic strength of samples were investigated and optimized. The optimized SPME coupled with high performance liquid chromatography (HPLC) was successfully applied to the determination of the seven BFRs in water samples. The linearity range was from 5.0 to 1000 μg L−1 for each compound except TBBPS (from 1.0 to 1000 μg L−1), with the correlation coefficients (r2) ranging from 0.9993 to 0.9999. The limits of detection of the method were 0.4–0.9 μg L−1. The relative standard deviations varied from 1.2 to 5.1% (n = 5). The repeatability of fiber-to-fiber and batch-to-batch was 2.5–6.5% and 3.2–6.7%. The recoveries of the BFRs from aqueous samples were in the range between 86.5 and 103.6%. Compared with three commercial fibers (100 μm PDMS, 85 μm PA and 65 μm PDMS/DVB), the MCFs-coated fiber showed about 3.5-fold higher extraction efficiency.  相似文献   

12.
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography–mass spectrometry (GC–MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 g L−1 honey blend solution was conditioned by adding 100 μL 0.1 mol L−1 hydrochloric acid (pH 2) and finally extracted with 100 μL Triton X-114 100 g L−1 at 85 °C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N = 3), ranged between 0.03 and 0.47 ng g−1. The method precision was evaluated over five replicates at 1 ng g−1 with RSDs ≤9.5%. The calibration graphs were linear within the concentration range of 0.3–1000 ng g−1 for chlorpirifos; and 1–1000 ng g−1 for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ng g−1). The recoveries were ≥90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ng g−1.  相似文献   

13.
An Ultrasound-Vortex-Assisted Dispersive Liquid–Liquid Micro-Extraction (USVADLLME) procedure coupled with Gas Chromatography-Flame Ionization Detector (GC-FID) or Gas Chromatography-Ion Trap Mass Spectrometry (GC-IT/MS) is proposed for rapid analysis of six phthalate esters in hydroalcoholic beverages (alcohol by volume, alc vol−1, ≤40%). Under optimal conditions, the enrichment factor of the six analytes ranges from 220- to 300-fold and the recovery from 85% to 100.5%. The limit of detection (LOD) and limit of quantification (LOQ) are ≥0.022 μg L−1 and ≥0.075 μg L−1, respectively. Intra-day and inter-day precisions expressed as relative standard deviation (RSD), are ≤8.2% and ≤7.0%, respectively. The whole proposed methodology has demonstrated to be simple, reproducible and sensible for the determination of trace phthalate esters in red and white wine samples.  相似文献   

14.
The aim of this work was to quantify five commonly used pesticides (propoxur, carbaryl, carbendazim, thiabendazole and fuberidazole) in real samples as: tomato, orange juice, grapefruit juice, lemon and tangerine. The method used for the determination of these analytes in the complex matrices was high-performance liquid chromatography with diode array detection. In order to work under isocratic conditions and to complete each run in less than 10 min, the analysis was carried out applying multivariate curve resolution coupled to alternating least-squares (MCR–ALS). The flexibility of this applied multivariate model allowed the prediction of the concentrations of the five analytes in complex samples including strongly coeluting analytes, elution time shifts, band shape changes and presence of uncalibrated interferents. The obtained limits of detection (in μg L−1) using the proposed methodology were 2.3 (carbendazim), 0.90 (thiabendazole), 12 (propoxur), 0.46 (fuberidazole) and 0.32 (carbaryl).  相似文献   

15.
Zhao RS  Lao WJ  Xu XB 《Talanta》2004,62(4):751-756
In the present work, a novel method for the determination of trihalomethanes (THMs) such as chloroform, dichlorobromomethane, chlorodibromomethane and bromoform in drinking water has been described. It is based on coupling headspace liquid-phase microextraction (HS-LPME) with gas chromatography-electron capture detector (GC-ECD). A microdrop of organic solvent at the tip of a commercial microsyringe was used to extract analytes from aqueous samples. Three organic solvents—xylene, ethylene glycol and 1-octanol—were compared and 1-octanol was the most sensitive solvent for the analytes. Extraction conditions such as headspace volume, extraction time, stirring rate, content of NaCl and extraction temperature were found to have significant influence on extraction efficiency. The optimized conditions were 15 ml headspace volume in a 40 ml vial, 10 min extraction time and 800 rpm stirring rate at 20 °C with 0.3 g ml−1 NaCl. The linear range was 1-100 μg l−1 for THMs. The limits of detection (LODs) ranged from 0.15 μg l−1 (for dichlorobromomethane and chlorodibromomethane) to 0.4 μg l−1 (for chloroform); and relative standard deviations (RSD) for most of THMs at the 10 μg l−1 level were below 10%. Real samples collected from tap water and well water were successfully analyzed using the proposed method. The recovery of spiked water samples was from 101 to 112%.  相似文献   

16.
This paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution – alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L−1 for Penicillin V and 0.32 g L−1 for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L−1 for Penicillin V and 0.15 g L−1 for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given.  相似文献   

17.
Due to the different physico-chemical properties of phenols, the development of a methodology for the simultaneous extraction and determination of phenolic compounds belonging to several families, such as chlorophenols (CPs), alkylphenols (APs), nitrophenols (NTPs) and cresols is difficult. This study shows the development and validation of a method for the analysis of 13 phenolic compounds (including CPs, APs, NTPs and cresols) in agricultural soils. For this purpose, a quick, easy, cheap, effective, rugged and safe (QuEChERS)-based procedure was developed, validated and applied to the analysis of real samples. A derivatization step prior to the final determination by gas chromatography (GC) coupled to a triple quadrupole analyzer operating in tandem mass spectrometry (QqQ-MS/MS) was performed by using acetic acid anhydride (AAA) and pyridine (Py). The optimized procedure was validated, obtaining average extraction recoveries in the range 69–103% (10 μg kg−1), 65–98% (50 μg kg−1), 76–112% (100 μg kg−1) and 76–112% (300 μg kg−1), with precision values (expressed as relative standard deviation, RSD) ≤ 22% (except for 4-chlorophenol) involving intra-day and inter-day studies. Furthermore, 15 real soil samples were analyzed by the proposed method in order to assess its applicability. Some phenolic compounds (e.g. 2,4,6-trichlorophenol or 4-tert-octylphenol) were found in the samples at trace levels (<10 μg kg−1).  相似文献   

18.
Ozer ET  Güçer S 《Talanta》2011,84(2):362-367
The determination of six phthalate acid esters was achieved in artificial saliva using gas chromatography-mass spectrometry following activated carbon enrichment of samples. Central composite experimental design was applied to optimize method parameters, such as pH, adsorption time and amount of activated carbon. The best compromise of analytical conditions for the simultaneous determination of analytes from spiked artificial saliva were found to be: pH (3), adsorption time (30 min), activated carbon amount (1.8 g L−1) and elution solvent (chloroform). These conditions were applied to study the migration of phthalate acid esters from different children's toys into saliva. A horizontal agitation method was applied to extract the analytes from plastic toys into saliva for 2 h at 37 °C. The detection limits of the method were in the range of 1.3-5.1 μg L−1, while the relative standard deviation (%) values for the analysis of 100 μg L−1 of the analytes were below 3.0% (n = 5). Di-2-ethylhexyl phthalate was the main analyte found in these samples.  相似文献   

19.
This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18–80.00 μg L−1) and determination coefficient (R2 > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L−1 with limit of quantification from 0.18 to 1.40 μg L−1. Recovery (n = 9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n = 9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n = 9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil.  相似文献   

20.
In this study, a convenient and extensible automated ionic liquid-based in situ dispersive liquid–liquid microextraction (automated IL-based in situ DLLME) was developed. 1-Octyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide ([C8MIM]NTf2) is formed through the reaction between [C8MIM]Cl and lithium bis[(trifluoromethane)sulfonyl]imide (LiNTf2) to extract the analytes. Using a fully automatic SPE workstation, special SPE columns packed with nonwoven polypropylene (NWPP) fiber, and a modified operation program, the procedures of the IL-based in situ DLLME, including the collection of a water sample, injection of an ion exchange solvent, phase separation of the emulsified solution, elution of the retained extraction phase, and collection of the eluent into vials, can be performed automatically. The developed approach, coupled with high-performance liquid chromatography–diode array detection (HPLC–DAD), was successfully applied to the detection and concentration determination of benzoylurea (BU) insecticides in water samples. Parameters affecting the extraction performance were investigated and optimized. Under the optimized conditions, the proposed method achieved extraction recoveries of 80% to 89% for water samples. The limits of detection (LODs) of the method were in the range of 0.16–0.45 ng mL−1. The intra-column and inter-column relative standard deviations (RSDs) were <8.6%. Good linearity (r > 0.9986) was obtained over the calibration range from 2 to 500 ng mL−1. The proposed method opens a new avenue for automated DLLME that not only greatly expands the range of viable extractants, especially functional ILs but also enhances its application for various detection methods. Furthermore, multiple samples can be processed simultaneously, which accelerates the sample preparation and allows the examination of a large number of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号