首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and disposable electrochemical immunosensor was designed for detection of alpha-fetoprotein (AFP), as a model analyte, with sensitivity enhancement based on enzyme-catalyzed silver deposition onto irregular-shaped gold nanoparticles (ISGNPs). The assay was carried out with a sandwich-type immunoassay protocol by using ISGNP-labeled anti-AFP antibodies conjugated with alkaline phosphatase (ALP–Ab2) as detection antibodies. The enzymatically catalytic deposition of silver on the electrode could be measured by stripping analysis in KCl solution due to the Ag/AgCl solid-state voltammetric process. Several labeling protocols including spherical gold nanoparticle-labeled ALP–Ab2 and ISGNP-labeled ALP–Ab2 were investigated for determination of AFP, and improved analytical properties were achieved with the ISGNP labeling. With the ISGNP labeling method, the effects of incubation time and incubation temperature for antigen-antibody reaction, and deposition time of silver on the current responses of the electrochemical immunosensors were also monitored. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range from 0.01 ng mL−1 to 200 ng mL−1 with a detection limit of 5.0 pg mL−1 AFP. The immunosensor displayed a good stability and acceptable reproducibility and accuracy. No significant differences at the 95% confidence level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of AFP.  相似文献   

2.
A new electrochemical immunosensor for sensitive determination of thyroid-stimulating hormone (TSH) was designed by using redox-active nanogold-functionalized magnetic beads (GoldMag) as signal tags on the nanogold–graphene interface. To construct such GoldMag nanostructures, polyethyleneimine-functionalized magnetic beads (PEI-MBs) were initially prepared by using a wet chemical method, and the electroactive thionine molecules and gold nanoparticles were then alternately immobilized on the surface of PEI-MBs by using an opposite-charged adsorption technique and an in situ synthesis method, respectively. The synthesized GoldMag nanostructures were utilized as signal tags for the label of horseradish peroxidase-anti-TSH conjugates (HRP-anti-TSH). With a sandwich-type immunoassay format, the conjugated signal tags on the transducer were increased with the increasing TSH concentration in the sample, thus enhancing the signal of the electrochemical immunosensor due to the labeled HRP toward the catalytic reduction of H2O2. Under optimal conditions, the current was proportional to the logarithm of TSH concentration ranging from 0.01 to 20 μIU mL−1 in pH 6.0 HAc–NaAc containing 6 mM H2O2. The detection limit (LOD) was 0.005 μIU mL−1 TSH at 3sB. The immunosensor displayed an acceptable reproducibility, stability and selectivity. In addition, the methodology was evaluated with human serum specimens, receiving good correlation with results from commercially available electrochemiluminescent analyzer.  相似文献   

3.
In this contribution, mesoporous carbon nanospheres (MCN) were used to fabricate a label-free electrochemical immunosensor for breast cancer susceptibility gene (BRCAl). The detection platform was constructed by conjugation of anti-BRCA1 on glassy carbon electrodes which were modified by mesoporous carbon nanospheres–toluidine blue nanocomposite (MCN–TB)/room temperature ionic-liquid (RTIL) composited film. TB was adsorbed onto MCN and acted as a redox probe. The electroactivity of TB was greatly enhanced in the presence of MCN. The good conductivity of MCN and BMIM·BF4 could promote the electron transfer and thus enhance the detection sensitivity. Moreover, the large surface area of MCN and the protein-binding properties of BMIM·BF4 could greatly increase the antibody loading. The specific antibody–antigen immunoreaction on the electrode surface resulted in a decrease of amperometric signal of the electrode. Under optimized conditions, the amperometric signal decreased linearly with BRCAl concentration in the range of 0.01–15 ng mL−1 with a low detection limit of 3.97 pg mL−1. The immunosensor exhibits high sensitivity, good selectivity and stability.  相似文献   

4.
Electrochemical behavior of three antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and butylated hydroquinone (TBHQ), was investigated at a glassy carbon electrode modified with gold nanoparticles (AuNPs/GCE). This electrode was characterized by scanning electron microscopy (SEM). The experimental results indicated that the modified electrode was strongly electroactive during the redox reactions of BHA, BHT and TBHQ, and this was confirmed by the observed increased redox peak currents and shifted potentials; in addition, the oxidation products of BHA and TBHQ were found to be the same. The experimental conditions were optimized and the oxidation peaks of BHA and BHT were clearly separated. Based on this, an electrochemical method was researched and developed for the simultaneous determination of BHA, BHT and TBHQ in mixtures with the use of first derivative voltammetry; the linear concentration ranges were 0.10–1.50 μg mL−1, 0.20–2.20 μg mL−1 and 0.20–2.80 μg mL−1, and detection limits were 0.039, 0.080 and 0.079 μg mL−1, for BHA, BHT and TBHQ, respectively. The proposed method was successfully applied for the analysis of the three analytes in edible oil samples.  相似文献   

5.
Caifeng Ding  Fei Zhao  Jin-Ming Lin 《Talanta》2009,78(3):1148-4751
A novel and effective electrochemical immunosensor for the rapid determination of α-fetoprotein (AFP) based on carbon paste electrode (CPE) consisting of room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) and graphite. The surface of the CPE was modified with gold nanoparticles for the immobilization of the α-fetoprotein antibody (anti-AFP). By sandwiching the antigen between anti-AFP on the CPE modified with gold nanoparticles and the secondary antibody, polyclonal anti-human-AFP labeled with horseradish peroxidase (HRP-labeled anti-AFP), the immunoassay was established. The concentration of AFP was determined based on differential pulse voltammetry (DPV) signal, which was generated in the reaction between O-aminophenol (OAP) and H2O2 catalyzed by HRP labeled on the sandwich immunosensor. AFP concentration could be measured in a linear range of 0.50-80.00 ng mL−1 with a detection limit of 0.25 ng mL−1. The immunosensor exhibited high sensitivity and good stability, and would be valuable for clinical assay of AFP.  相似文献   

6.
Here we designed a new electrochemical immunoassay protocol for determination of carcinoembryonic antigen (CEA) using nanoplatinum-enclosed gold nanocores (Pt@Au) as catalytically promoted nanolabels on the carbon nanospheres and graphene-modified immunosensor. The Pt@Au nanolabels were synthesized and functionalized with monoclonal anti-CEA antibodies and glucose oxidase (GOx). Using the functional Pt@Au nanolabels as molecular tags, the assay was implemented relative to glucose–hydroquinone system with a sandwich-type immunoassay. Initially, the added glucose was oxidized to gluconolactone and H2O2 by the labeled GOx, and then the generated H2O2 was reduced with the help of platinum nanoparticles, leading to the production of oxygen. The self-produced oxygen could promote the re-oxidation of the glucose, thus resulting in the dual amplification of the electrochemical signal. Several nanolabels, such as multiarmed star-like platinum nanowires, hollow platinum nanospheres and Pt@Au nanostructures, were investigated for CEA detection and improved analytical features were obtained with the Pt@Au nanostructures. Under optimal conditions, the Pt@Au-based immunoassay displayed a wide working range from 0.001 to 120 ng mL−1 with a low detection limit of 0.5 pg mL−1 CEA at 3sB. Intra- and inter-assay coefficients of variation were <10.9%. The system was evaluated with 10 clinical serum samples, receiving good accordance with results from enzyme-linked immunosorbent assay method.  相似文献   

7.
A sensitive electrochemical approach for the detection of thrombin was designed by using densely packed hierarchical dendritic gold microstructures (HDGMs) with secondary and tertiary branches as matrices, and thionine-functionalized mesoporous silica nanospheres as signal tags. To prepare the signal tags, the positively charged thionine (as an indicator) was initially adsorbed onto the mesoporous silica nanoparticles (MSNs). Then [AuCl4] ions were in situ reduced on the thionine-modified MSNs by ascorbic acid to construct nanogold-decorated MSNs (GMSNs). The formed GMSNs were employed as label of the aminated aptamers. The assay was carried out in PBS, pH 7.4 with a sandwich-type assay mode by using the assembled thionine in the GMSNs as indicators. Compared with the pure silica nanoparticles, mesoporous silica could provide a larger surface for the immobilization of biomolecules and improve the sensitivity of the aptasensor. Under optimal conditions, the electrochemical aptasensors exhibited a wide linear range from 0.001 to 600 ng mL−1 (i.e. 0.03 pM to 0.018 μM thrombin) with a low detection limit (LOD) of 0.5 pg mL−1 (≈15 fM) thrombin at 3σ. No obvious non-specific adsorption was observed during a series of analyses to detect target analyte. The precision, selectivity and stability of the aptasensors were acceptable. Importantly, the methodology was evaluated with thrombin spiked samples in blank fetal calf serum, and the recoveries were 94.2–112%, indicating an exciting potential for thrombin detection.  相似文献   

8.
Nano-montmorillonites belong to aluminosilicate clay minerals with innocuity, high specific surface area, ion exchange, and favorable adsorption property. Due to the excellent properties, montmorillonites can be used as labels for the electrochemical immunosensors. In this study, nano-montmorillonites were converted to sodium montmorillonites (Na-Mont) and further utilized for the immobilization of thionine (TH), horseradish peroxidase (HRP) and the secondary anti-zeranol antibody (Ab2). The modified particles, Na-Mont-TH-HRP-Ab2 were used as labels for immunosensors to detect zeranol. This protocol was used to prepare the immunosensor with the primary antibody (Ab1) immobilized onto the nanoporous gold films (NPG) modified glassy carbon electrode (GCE) surface. Within zeranol concentration range (0.01–12 ng mL−1), a linear calibration plot (Y = 0.4326 + 8.713 X, r = 0.9996) was obtained with a detection limit of 3 pg mL−1 under optimal conditions. The proposed immunosensor showed good reproducibility, selectivity, and stability. This new type of immunosensors with montmorillonites and NPG as labels may provide potential applications for the detection of zeranol.  相似文献   

9.
Yang Y  Wang Z  Yang M  Li J  Zheng F  Shen G  Yu R 《Analytica chimica acta》2007,584(2):268-274
A novel and sensitive electrochemical DNA biosensor based on nanoparticles ZrO2 and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is described. The MWNTs/nano ZrO2/chitosan-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides were immobilized to the GCE. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using electroactive daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity and complementary DNA detection sensitivity. The response signal increases linearly with the increase of the logarithm of the target DNA concentration in the range of 1.49 × 10−10 to 9.32 × 10−8 mol L−1 with the detection limit of 7.5 × 10−11 mol L−1 (S/N = 3). The linear regression equation is I = 32.62 + 3.037 log CDNA (mol L−1) with a correlation coefficient value of 0.9842. This is the first application of carbon nanotubes combined with nano ZrO2 to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

10.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

11.
Small molecules or analytes present at low concentrations are difficult to detect directly using conventional surface plasmon resonance (SPR) techniques because only small changes in the refractive index of the medium are typically induced by the binding of these analytes. Here, we present an amplification technique using core–shell Fe3O4@Au magnetic nanoparticles (MNPs) for an SPR bioassay. To evaluate this amplification effect, a novel SPR sensor based on a sandwich immunoassay was developed to detect α-fetoprotein (AFP) by immobilizing a primary AFP antibody (Ab1) on the surface of a 3-mercapto-1-propanesulfonate/chitosan-ferrocene/Au NP (MPS/CS-Fc/Au NP) film employing Fe3O4@Au–AFP secondary antibody conjugates (Fe3O4@Au–Ab2) as the amplification reagent. The stepwise fabrication of the biosensor was characterized using UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. A calibration curve of Fe3O4@Au–Ab2 conjugates amplification for AFP detection was obtained to yield a correlation in the range of 1.0–200.0 ng mL−1 with a detection limit of 0.65 ng mL−1, and a significant increase in sensitivity was therefore afforded through the use of Fe3O4@Au–Ab2 conjugates as an amplifier. This magnetic separation and amplification strategy has great potential for the detection of other biomolecules of interest with low interference and high sensitivity by changing the antibody label used in the Fe3O4@Au–antibody conjugates.  相似文献   

12.
A simple and sensitive method has been proposed to determine a trace level of α-fetoprotein (AFP), hepatocellular carcinoma biomarker, using poly(methyl methacrylate) (PMMA) microfluidic chips coupled with electrochemical detection system. The PMMA microchannels have been modified with poly(ethyleneimine) (PEI) containing abundant NH2 groups to covalently immobilize AFP monoclonal antibody. Afterward, the antigen AFP and horseradish peroxidase (HRP)-conjugated AFP antibody can sequentially bind through antigen-antibody specific interaction. Atomic force microscopy (AFM) and confocal fluorescence microscope (CFFM) were utilized to characterize the surface topography and protein immobilization after modification. Coupled with three-electrode electrochemical detection system, the immunochip can perform the detection limit of AFP down to 1 pg mL−1, and achieve a detectable linear concentration range of 1-500 pg mL−1 by differential pulse voltammetry (DPV). The on-chip immunoassay platform can not only provide rapid and sensitive detection for target proteins but also be resistant to non-specific adsorption of proteins, which contributes to the detection of low-level protein in real sample. Finally, AFP existing in healthy human serum was detected to demonstrate the utility of the immunochip. The result shows that the proposed approach is feasible and has the potential application in clinical analysis and diagnosis.  相似文献   

13.
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au–thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer–AuNPs–HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1 × 102 to 1 × 107 cells mL−1 and high sensitivity with a low detection limit of 30 cells mL−1. Furthermore, after the electrochemical detection, the activation potential of −0.9 to −1.7 V was performed to break Au–thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.  相似文献   

14.
In this work, poly(diallyldimethylammonium chloride) (PDDA) protected Prussian blue/gold nanoparticles/ionic liquid functionalized reduced graphene oxide (IL-rGO-Au-PDDA-PB) nanocomposite was fabricated. The resulting nanocomposite exhibited high biocompatibility, conductivity and catalytic activity. To assess the performance of the nanocomposite, a sensitive sandwich-type immunosensor was constructed for detecting alpha-fetoprotein (AFP). Greatly enhanced sensitivity for this immunosensor was based on triple signal amplification strategies. Firstly, IL-rGO modified electrode was used as biosensor platform to capture a large amount of antibody due to its increased surface area, thus amplifying the detection response. Secondly, a large number of Au-PDDA-PB was conjugated on the surface of IL-rGO, which meant the enrichment of the signal and the more immobilization of label antibody. Finally, the catalytic reaction between H2O2 and the IL-rGO-Au-PDDA-PB nanocomposite further enhanced the signal response. The signals increased linearly with AFP concentrations in the range of 0.01–100 ng mL−1. The detection limit for AFP was 4.6 pg mL−1. The immunosensor showed high sensitivity, excellent selectivity and good stability. Moreover, the immunosensor was applied to the analysis of AFP in serum sample with satisfactory result.  相似文献   

15.
The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6]3+ (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au–S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6]3+) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10 U mL−1 with a detection limit of 0.18 U mL−1 (S/N = 3), which might promise this method as a good candidate for monitoring DNA methylation in the future.  相似文献   

16.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

17.
Methods based on nanomaterial labels have been developed for electrochemical immunosensors and immunoassays, but most involved low sensitivity. Herein a novel class of molecular tags, nanogold–polyaniline–nanogold microspheres (GPGs), was first synthesized and functionalized with horseradish peroxidase-conjugated thyroid-stimulating hormone antibody (HRP-Ab2) for sensitive electrochemical immunoassay of thyroid-stimulating hormone (TSH). X-ray diffraction, confocal Raman spectroscopy, scanning electron microscope and transmission electron microscope were employed to characterize the prepared GPGs. Based on a sandwich-type immunoassay format, the assay was performed in pH 5.0 acetate buffer containing 6.0 mmol L−1 H2O2 by using GPG-labeled HRP-Ab2 as molecular tags. Compared with pure polyaniline nanospheres and gold nanoparticles alone, the GPG hybrid nanostructures increased the surface area of the nanomaterials, and enhanced the immobilized amount of HRP-Ab2. Several labeling protocols comprising HRP-Ab2, nanogold particle-labeled HRP-Ab2, and polyaniline nanospheres-labeled HRP-Ab2, were also investigated for determination of TSH and improved analytical features were obtained by using the GPG-labeled HRP-Ab2. With the GPG labeling method, the effects of incubation time and pH of acetate buffer on the current responses of the immunosensors were also studied. The strong attachment of HRP-Ab2 to the GPGs resulted in a good repeatability and intermediate precision down to 7%. The dynamic concentration range spanned from 0.01 to 20 μIU mL−1 with a detection limit (LOD) of 0.005 μIU mL−1 TSH at the 3sB criterion. Significantly, no significant differences at the 0.05 significance level were encountered in the analysis of 15 spiking serum samples between the developed electrochemical immunoassay and the commercially available enzyme-linked immunosorbent assay (ELISA) method for determination of TSH.  相似文献   

18.
A nitrogen-doped graphene/carbon nanotubes (NGR–NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR–NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR–NCNTs (ENGR–NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR–NCNTs/GCE exhibited a wide linearity of 0.06–50 μM for CAF and 0.01–10 μM for VAN with detection limits of 0.02 μM and 3.3 × 10−3 μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR–NCNTs nanocomposite has promising potential in electrocatalytic biosensor application.  相似文献   

19.
巫远招  干宁  胡富陶  李天华  曹玉廷  郑磊 《分析化学》2011,39(11):1634-1640
采用Fe3O4(核)/ZrO2(壳)纳米磁珠(ZMPs)标记待测物识别抗体,并用HRP酶封闭和DNA链接,建立了一类新型的"珠链状"一维磁性纳米探针制备方法。将甲胎蛋白(AFP)一抗固定于纳米金修饰的玻碳电极表面,构建了免疫电极(GCE?AFP Ab1)。基于该电极和上述合成探针,通过双抗体夹心法测定免疫产物上HRP酶对过氧化脲(CP)氧化对苯二酚反应的催化电流,研制了一类基于一维纳米结构组装的夹心型安培免疫传感器。研究表明:此一维纳米结构探针不仅大大增加了酶在电极表面的富集量,成倍扩增了催化电流,显著提高了传感器的灵敏度,而且易于通过外磁场与背景液可控分离,简化了分析步骤,并提高了结果的重复性。此传感器对AFP检测的线性范围为0.01~25 mg/L;检出限达4 ng/L(3σ),并被用于人血清中痕量AFP的测定,结果满意。  相似文献   

20.
A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (ΓFAD) was ca. 5.11 × 10−10 mol cm−2. The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM−1 cm−2, a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na+, Mg2+, Ca2+, Zn2+, Fe2+, Cl, NO3, I, SO42− and SO32−, with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号