首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH4OH, and Na2CO3. The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or barley as feedstock was examined. The carbon dioxide gas from the ethanol fermentor was sparged directly into the liquid media in the succinic acid fermentor without any pretreatment. Without the CO2 supplement, the highest succinic acid yield was observed with Na2CO3, followed by NH4OH, and lowest with the other two bases. When the CO2 produced in the ethanol fermentation was sparged into the media in the succinic acid fermentor, no improvement of succinic acid yield was observed with Na2CO3. However, several-fold increases in succinic acid yield were observed with the other bases, with NH4OH giving the highest yield increase. The yield of succinic acid with CO2 supplement from the ethanol fermentor when NH4OH was used for pH control was equal to that obtained when Na2CO3 was used, with or without CO2 supplementation. The benefit of sparging CO2 from ethanol fermentation on the yield of succinic acid demonstrated the feasibility of integration of succinic acid fermentation with ethanol fermentation in a biorefinery for production of fuels and industrial chemicals.  相似文献   

2.
This work describes the development of a novel method for glucose determination exploiting a photoelectrochemical‐assisted batch injection analysis cell designed and constructed with the aid of 3D printer technology. The PEC‐BIA cell was coupled to a LED lamp in order to control the incidence of light on the Cu2O/Ni(OH)2/FTO photoelectroactive platform. The electrochemical characteristics of Cu2O/Ni(OH)2/FTO photoelectroactive platform were evaluated by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The PEC‐BIA cell presented linear response range, limit of detection based on a signal‐to‐noise ratio of three, and sensitivity of 1–1000 μmol L?1, 0.76 μmol L?1 and 0.578 μA L μmol?1, respectively. The PEC‐BIA method presented a mean value of the recovery values of 97.0 % to 102.0 % when it was applied to glucose determination in artificial blood plasma samples which indicates the promising performance of the proposed system to determine glucose.  相似文献   

3.
The spherical nano-Ni(OH)2 has been characterized by a series of spectra methods such as the scanning electron microscope (SEM), the transmission electron microscope (TEM) and the X-ray diffraction (XRD). The electrochemical behavior of spherical nano-Ni(OH)2, attached to a graphite electrode and adjacent to an aqueous KOH-KCl electrolyte solution, has been studied by cyclic voltammetry. Spherical nano-Ni(OH)2 exhibits a pair of quasi-reversible redox peaks. The relationship of the granularity and the potential was investigated, as well as the effect of different pH conditions. Moreover, the cycling experiments have been set up using spherical nano-Ni(OH)2 and traditional analytical grade Ni(OH)2, respectively, and their cycling performances were evaluated as well. The capacity of spherical nano-Ni(OH)2 is ca. ten times higher than the one with the traditional material under the same conditions, which shows its better electrochemical properties.  相似文献   

4.
基于密度泛函理论(DFT)设计了一系列不同氧化程度的还原氧化石墨烯片(rGNOs)并研究了其表面的氧化缺陷与吸附的氢氧化镍(Ni(OH)2)之间的相互作用. 结果发现,rGNOs表面的含氧基团与Ni(OH)2之间的吸附能与含氧基团的氧化程度相关. 在吸附Ni(OH)2后,rGNOs的原子间距和电荷分布的变化也都受rGNOs表面的含氧缺陷的氧化程度影响. 理论计算的结果与实验观察的结果一致并能给出合理的解释.我们用简单的恒电位电化学沉积法有效地在rGNOs表面制备了粒径只有5 nm的Ni(OH)2纳米粒子. 在Ni(OH)2/rGNOs制备过程中,氧化石墨烯的电化学还原是关键步骤. Ni(OH)2上吸附的Ni(OH)2因具有更高的吸附能而使其与在镍膜表面直接吸附的Ni(OH)2(在5 mV·s-1下比电容为656 F·g-1)相比具有更高的比电容值(在5 mV·s-1下为1591 F·g-1).rGNOs在吸附Ni(OH)2后构型和电荷分布的变化导致Ni(OH)2具有更低的等效串联电阻和更佳的频率响应.Ni(OH)2/rGNOs优异的赝电容特性表明其有潜力成为新型赝电容器材料.  相似文献   

5.
Herein, we report the in situ growth of single‐crystalline Ni(OH)2 nanoflakes on a Ni support by using facile hydrothermal processes. The as‐prepared Ni/Ni(OH)2 sponges were well‐characterized by using X‐ray diffraction (XRD), SEM, TEM, and X‐ray photoelectron spectroscopy (XPS) techniques. The results revealed that the nickel‐skeleton‐supported Ni(OH)2 rope‐like aggregates were composed of numerous intercrossed single‐crystal Ni(OH)2 flake‐like units. The Ni/Ni(OH)2 hybrid sponges served as electrodes and displayed ultrahigh specific capacitance (SC=3247 F g?1) and excellent rate‐capability performance, likely owing to fast electron and ion transport, sufficient Faradic redox reaction, and robust structural integrity of the Ni/Ni(OH)2 hybrid electrode. These results support the promising application of Ni(OH)2 nanoflakes as advanced pseudocapacitor materials.  相似文献   

6.
The solubility of crystalline Ni(OH)2 was studied in solutions of 0.01M NaC104 with pH ranging from 7 to near 14. Equilibrium was approached both from over-and undersaturation, and the equilibration times extended from 3 to 90 days. The solubility of Ni(OH)2(c) in the pH range of approximately 7 to 11.3 was effectively modeled by including aqueous Ni2+ and NiOH+ species. Values of the logarithm of the thermodynamic equilibrium constants for the reactions [Ni(OH)2(c) ⇌ Ni2+ + 2OH-] and [Ni2+ + OH- ⇌ Ni(OH)+] were determined to be -16.1±0.1 and 5.65 ± 0.10, respectively. These data, in conjunction with Pitzer ion interaction parameters given in the literature, were used to model the reported solubilities of Ni(OH)2(c) in chloride, sodium acetate, and potassium chloride solutions. The model predictions for these systems were in excellent agreement with the experimental data from the literature.  相似文献   

7.
Two new complexes [{Zn(L1)(μ-OAc)Zn(CH3CHOHCH3)}2] and [Ni(L2)(H2O)(CH3OH)] with asymmetric Salamo-type ligands (H3L1 and H2L2) are synthesized and structurally characterized. In the Zn(II) and Ni(II) complexes, the terminal and central Zn(II) atoms are found to have slightly distorted square pyramidal and trigonal bipyramidal symmetries respectively, while the Ni(II) atom is hexa-coordinated and has a slightly distorted octahedral symmetry. Interestingly, a self-assembling continual zigzag 1D chain is formed by intermolecular hydrogen bonds in the Ni(II) complex. Furthermore, the Zn(II) and Ni(II) complexes in the ethanol solution show intense photoluminescence.  相似文献   

8.
Two kinds of electrode materials Ni(OH)2 and Ni(OH)2@Zn(OH)2 composite are fabricated on nickel foam. Electrochemical experiments indicate Ni(OH)2@Zn(OH)2 composite deserves further study due to high specific capacitance and good cycle stability, so that it can achieve energy storage and conversion as much as possible. When the hydrothermal time is different, the electrochemical performance of the sample is also different. Accurately, samples can obtain better electrochemical performance at 15 h, and the maximum specific capacitance of Ni(OH)2@Zn(OH)2 is 7.87 F cm?2 compared to Ni(OH)2 (0.61 F cm?2) at 5 mA cm?2. Even at 50 mA cm?2, specific capacitance is 5.24 F cm?2 and rate capability is 66.6%. Furthermore, Ni(OH)2@Zn(OH)2-15 h loses 19.8% after 1000 cycles, revealing the composite has an outstanding stable cycle. These properties also indicate Ni(OH)2@Zn(OH)2-15 h is a promising electrode material.  相似文献   

9.
Herein, we introduce a facile, inexpensive and fast, and additive-/template-free method to fabricate highly stable nickel hydroxide nanofibers for supercapacitor applications. Ni(OH)2 nanofibers were electrodeposited on electro-etched carbon fiber paper by a potential step method (Ni(OH)2-ECFs) and characterized using scanning electron microscopy and X-ray diffraction analysis. Electrochemical performance of Ni(OH)2-ECF was studied in symmetric two-electrode assembly by cyclic voltammetry, galvanostatic charge–discharge method, and electrochemical impedance spectroscopy. A specific capacitance of 277.5 F g?1 was achieved for the symmetric supercapacitor based on two identical Ni(OH)2-ECFs. Our findings demonstrate high-rate capability with excellent stability (approximately 100 % capacitance retention) for Ni(OH)2-ECF supercapacitor, originated from the intimate contact between Ni(OH)2 and ECF. Our studies suggest the Ni(OH)2-ECF electrode as an excellent material for supercapacitor applications.  相似文献   

10.
The present work reports synthesis of cobalt hydroxide (Co(OH)2) rods on nickel foam and its supercapacitor application. Hierarchical Co(OH)2 rods with length of approximately 3.5 μm and diameter of approximately 400 nm were prepared by one‐step, simple, and inexpensive chemical‐bath‐deposition method. The direct growth of Co(OH)2 rods on the Ni foam gave three dimensional (3D) structure for easy access of electrolyte throughout material surface. Also, well‐adhered interface between Co(OH)2 rods and Ni‐foam surface gave better conduction channels. Detailed electrochemical study was performed by using cyclic voltammetry and galvanostatic charge/discharge measurements. The results demonstrate that Co(OH)2 rods on Ni foam are efficient electrodes for supercapacitor application.  相似文献   

11.
This work reports the synthesis of nickel/nickel hydroxides nanoflakes (Ni/Ni(OH)2-NFs) at room temperature via a novel chemical deposition and exfoliation from a liquid crystal template mixture. The nickel ions dissolved in the interstitial aqueous domain of the Brij®78 hexagonal liquid crystal template were deposited by a reducing agent of sodium borohydride that concurrently reduces the nickel ions and generates extreme hydrogen gas bubbles, that exfoliated the nickel/nickel hydroxide layers. The Ni/Ni(OH)2-NFs crystal structure, morphology, and surface area characterizations revealed the formation of semi-crystalline α-Ni(OH)2 nanoflakes with a thickness of approximately 10 nm and a specific surface area of about 135 m2/g. The electrochemical measurements of cyclic voltammetry, chronoamperometry, and impedance analysis showed that the Ni/Ni(OH)2-NFs exhibited significant performance for the glucose non-enzymatic oxidation in an alkaline solution in comparison to the bare-nickel hydroxide (bare-Ni(OH)2) deposited without surfactant. The Ni/Ni(OH)2-NFs electrode showed superior glucose oxidation activity over the bare-Ni(OH)2 catalyst with a sensitivity of 1.078 mA mM?1 cm?2 with a linear concentration dependency range from 0.2 to 60 mM and a detection limit of 0.2 mM (S/N = 3). The enhanced electrochemical active surface area and mesoporosity of the 2D nanoflakes make the Ni/Ni(OH)2-NFs a promising catalyst in the application of glucose non-enzymatic sensing.  相似文献   

12.
Ni(OH)2 nanoflowers were synthesized by a simple and energy‐efficient wet chemistry method. The product was characterized by scanning electron microscopy (SEM) and X‐ray powder diffraction (XRD). Then Ni(OH)2 nanoflowers attached multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCE) were proposed (MWCNTs/Ni(OH)2/GCE) to use as electrochemical sensor to detect hydrogen peroxide. The results showed that the synergistic effect was obtained on the MWCNTs/Ni(OH)2/GCE whose sensitivity was better than that of Ni(OH)2/GCE. The linear range is from 0.2 to 22 mmol/L, the detection limit is 0.066 mmol/L, and the response time is <5 s. Satisfyingly, the MWCNTs/Ni(OH)2/GCE was not only successfully employed to eliminate the interferences from uric acid (UA), acid ascorbic (AA), dopamine (DA), glucose (GO) but also NO2? during the detection. The MWCNTs/Ni(OH)2/GCE allows highly sensitive, excellently selective and fast amperometric sensing of hydrogen peroxide and thus is promising for the future development of hydrogen peroxide sensors.  相似文献   

13.
In strong alkaline media, the reaction of 2-(tert-butylamino)ethanol (3: R?=?But) with CS2 at 0°C produced a cyclic dithiocarbamate, 3-tert-butylthiazolidine-2-thione (1: R?=?But), rather than alkaline metal or ammonium salts of [S2CN(But)CH2CH2OH]?. This is in contrast to isolation of stable alkaline metal or ammonium salts of [S2CN(R)CH2CH2OH]? (R?=?Me, Et, Pr, or CH2CH2OH) obtained in analogous reactions. The use of Ni(OAc)2, both as a source of Ni(II) and a weaker base, in a one-pot reaction with (3: R?=?But) and CS2, successfully gave the first reported metal complex of [S2CN(But)CH2CH2OH]?, namely [Ni{S2CN(But)CH2CH2OH}2] (2: R?=?But). Compounds 1 and 2 have been fully characterized by infrared and NMR spectroscopies, and by X-ray crystallography. DFT calculations on the cyclization and stabilities of [S2CN(R)CH2CH2OH]? (R?=?Pr and But) have been carried out.  相似文献   

14.
《Electroanalysis》2003,15(11):987-990
The electrochemical quartz crystal impedance (EQCI) technique has been applied to investigate glucose oxidation on bare and Ni(OH)2‐modified Au electrodes in 0.2 mol L?1 KOH aqueous solution. The EQCI responses suggest different contributions of H+‐release and OH?‐incorporation reactions of the Ni(OH)2‐film redox process in 0.2 mol L?1 aqueous KOH at different potentials. Glucose adsorption on the Ni(OH)2‐modified Au electrode was studied. A mechanism for potential cyclic redox process of glucose at Ni(OH)2‐modified Au electrode is suggested, mainly based on a comparative EQCI analysis with direct glucose oxidation on bare gold and glucose ad‐/desorption on Ni(OH)2 film.  相似文献   

15.
Two-dimensional nickel hydroxide nanosheets were synthesized by exfoliating surfactant intercalated layered nickel hydroxides and developed as electrocatalysts for urea electro-oxidation. The electro-oxidation of urea on Ni(OH)2 nanosheet modified electrodes shows a decrease of 100 mV in overpotential and an enhancement in current density, which reaches ca.154 mA cm− 2 mg− 1, by a factor of ca. 170 compared to bulk Ni(OH)2 powder modified electrodes. The Ni(OH)2 nanosheets have promising applications in urea-rich wastewater remediation, hydrogen production, electrochemical sensors, and fuel cells due to their ability to promote the urea electrolysis reaction.  相似文献   

16.
A novel non‐enzymatic glucose sensor based on nickel hydroxide and intercalated graphene with ionic liquid (G‐IL) nanocomposite modified glass carbon electrode was fabricated. Scanning electron microscope, Fourier transform infrared spectra and energy dispersive X‐ray spectroscopy of the nanocomposite confirmed the morphology and ingredient of Ni(OH)2 as well as G‐IL. Moreover, experimental results of cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry indicated the sensing properties of Ni(OH)2 at Ni(OH)2/G‐IL modified electrode towards the typical electrocatalytic oxidation process of glucose at 0.43 V in 0.10 M NaOH. The current response was linearly related to glucose concentration in a range from 0.5 to 500 μM with a detection limit of 0.2 μM (S/N = 3) and sensitivity of 647.8 μA mM?1 cm?2. The response time of the sensor to glucose was less than 2 s. This work may be expected to develop an excellent electrochemical sensing platform of G‐IL as a catalysis carrier.  相似文献   

17.
《Electroanalysis》2017,29(8):1961-1967
In this study, the electrodeposition of nickel hydroxide nanoparticles onto a screen‐printed electrode (Ni(OH)2/SPE) is described. Ni(OH)2/SPE is proposed as an alternative non‐enzymatic glucose sensor based on Electrochemical Impedance Spectroscopy (EIS) measurements.The SPEs were modified by the cathodic electrodeposition of nickel, from a solution containing 0.010 M Ni(NO3)2 and 1 M NH4Cl, at −1.3 V for 60 seconds. The SEM images show a uniform distribution of nickel spherical nanoparticles, with 60 nm average particle size. However, such morphology is not observed when the electrodeposition occurs in the absence of NH4Cl. The electrochemical properties of the sensor were carefully evaluated by Cyclic Voltammetry. Ni(OH)2/SPE shows a remarkable electrocatalytic behavior towards the oxidation of glucose in 0.1 M KOH. EIS measurements were carried out for Ni(OH)2/SPE and a single‐frequency impedance method is proposed as transduction principle for glucose determination. The analysis of each parameter of complex impedance was performed. The best linear response was obtained for the module of impedance (|Z|) in the range of 0–2 mM of glucose at 0.1 Hz (R2=0.992) with a slope of 0.137 KΩ−1⋅mM−1 of glucose. Finally, Ni(OH)2/SPE was utilized for quantification of glucose in blood samples.  相似文献   

18.
This work describes the chemical synthesis of nickel hydroxide in the presence of cationic and anionic surfactants (dodecyl benzene sulfonate, DBS?, and cetyltrimethylammonium, CTA+). The materials were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. Our findings highlighted that the synthesis in the presence of anionic DBS?, the α-Ni(OH)2 structure was preferentially formed. This material showed a high structural disorder and a high amount of intercalated species, suggesting the presence of both micelles and individual surfactants. On the other hand, the synthesis performed in the presence of CTA+ has not showed any drastic change in the material structure compared with pure Ni(OH)2; nevertheless, the intercalated cationic surfactant was identified by FTIR measurements. The enhanced electrochemical response found for the Ni(OH)2/DBS? over the Ni(OH)2/CTA+ modified electrodes can be attributed to the enhancement of the ionic diffusion through the solid material as an effect of the high structural disorder and the presence of the excess of the negative electric charge in the Ni(OH)2 sheets.  相似文献   

19.
A simple method for desorption and purification of99Mo from spent99Mo/99mTc generators is described. The alumina column was washed successively with 0.9% saline water, 35% H2O2, and then the99Mo was eluted with 2M NH4OH. Ammonia and residual H2O2 were removed by heating the eluate. Finally,99Mo solution was passed through a 0.2 m membrane filter to remove precipitated aluminium hydroxide.  相似文献   

20.
A novel photo-electrochemical and non-enzymatic hydrogen peroxide (H2O2) sensor was fabricated by electrochemically cathodic plating nickel hydroxide (Ni(OH)2) on platinum films coated n-silicon (Pt/n-n+-Si electrode). Nickel oxide hydroxide (Ni(OH)2-NiOOH) films on the Pt/n-n+-Si electrode were formed by cyclic voltammetry in 0.2 M KOH solution. The morphology and composition of Ni(OH)2-NiOOH film were characterized via scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. A two-electrode cell based on Ni(OH)2-NiOOH/Pt/n-n+-Si electrode and a platinum counter has been used for determination of H2O2 in the absence of reference electrode by photocurrent measurement at a zero bias. In these conditions a sensitivity of 96.9 μA mM?1 cm?2 and a linear response range from 0.02 up to 0.16 mM with a determination limit (S/N?=?3) of 5.4 μM were achieved in KOH solution at pH 13.3. In addition, the electrode also exhibited superior stability, anti-interference and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号