首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

2.
Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL−1 to 100 ng mL−1 and a low limit of detection of 0.037 pg mL−1. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins.  相似文献   

3.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

4.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

5.
Electrochemiluminescent (ECL) immunosensor with multiple signal amplification was designed based on gold nanoparticles (AuNPs), polyamidoamine dendrimers (PAMAM) and silver-cysteine hybrid nanoribbon (SNR). Low toxic l-cysteine capped CdSe QDs was chosen as the ECL signal probe. To verify the proposed ultrasensitive ECL immunosensor for β-adrenergic agonists (β-AA), we detected Brombuterol (Brom) as a proof-of-principle analyte. Therein, AuNPs as the substrate can simplify the experiment process, accelerate the electron transfer rate, and carry more coating antigen (Ag-OVA) to enlarge ECL signal. On one hand, SNR on the surface of electrode can avoid the aggregation of AuNPs, and SNR-PAMAM-AuNPs also can be acted as a good accelerator for electron transfer. On the other hand, PAMAM (16 -NH2) functionalized SNR (SNR-PAMAM) with numerous amino groups could be employed to bond abundant actived QDs to further amplify ECL signal. The new immunosensor can offer a simple, reliable, rapid, and selective detection for Brom, which have a dynamic range of 0.005–700 ng mL−1 with a low detection limit at 1.5 pg mL−1. The proposed biosensor will extend the application of nanomaterials in ECL immunoassays and open a new road for the detection of Brom and other β-AA in the future.  相似文献   

6.
In this work, a sandwich-type electrochemical immunosensor for simultaneous sensitive detection of prostate specific antigen (PSA) and free prostate specific antigen (fPSA) is fabricated. Gold nanoparticles (AuNPs) modified Prussian blue and nickel hexacyanoferrates nanoparticles were firstly prepared, respectively, and then decorated onion-like mesoporous graphene sheets (denoted as Au@PBNPs/O-GS and Au@NiNPs/O-GS) as distinguishable signal tags to label different detection antibodies. Subsequently, streptavidin and biotinylated alkaline phosphatase (bio-AP) were employed to block the possible remaining active sites. With the employment of the as prepared nanohybrids, the dual catalysis amplification can be achieved by catalysis of the ascorbic acid 2-phosphate to in situ produce AA in the presence of bio-AP, and then AA was further catalyzed by Au@PBNPs/O-GS and Au@NiNPs/O-GS nanohybrids, respectively, to obtain the higher signal responses. The experiment results show that the linear range of the proposed immunosensor for simultaneous determination of fPSA is from 0.02 to 10 ng mL−1 with a detection limit of 6.7 pg mL−1 and PSA is from 0.01 to 50 ng mL−1 with a detection limit of 3.4 pg mL−1 (S/N = 3). Importantly, the proposed method offers promise for rapid, simple and cost-effective analysis of biological samples.  相似文献   

7.
An ultrasensitive multiplexed immunoassay method was developed by using streptavidin/nanogold/carbon nanohorn (SA/Au/CNH) as a novel signal tag to induce silver enhancement for signal amplification. The Au/CNH was prepared by in situ growth of nanogold on carboxylated CNH and functionalized with streptavidin. The SA/Au/CNH showed well dispersibility in physiological buffer and could sever as a common tracing tag to recognize biotinylated signal antibody. The immunosensor array was prepared on disposable screen-printed electrodes. Through sandwich-type immunoreaction and biotin-streptavidin affinity reaction, the SA/Au/CNH tag was captured on the immunoconjugates to induce silver deposition and amplify the electrochemical stripping signals. Using α-fetoprotein and carcinoembryonic antigen as model analytes, the proposed method showed wide linear ranges with the detection limits down to 0.024 pg mL−1 and 0.032 pg mL−1, respectively, and eliminated completely signal cross-talk between adjacent immunosensors. It provided a convenient, high-efficient and ultrasensitive electrochemical detection route for biological analytes, showing great potential in clinical application.  相似文献   

8.
A novel electrochemical immunoassay was developed based on the signal amplification strategy of silver deposition directed by gold nanorods (AuNRs), which was in-situ assembled on the sandwich immunocomplex. The superstructure formed by the self-assembly of AuNRs provided abundant active sites for the nucleation of silver nanoparticles. In this pathway, the stripping current of silver was greatly enhanced. Using human immunoglobulin G (HIgG) as a model analyte, the ultrasensitive immunoassay showed a wide linear range of six orders of magnitude from 0.1 fg mL−1 to 100 pg mL−1, with the low detection limit down to 0.08 fg mL−1. The practicality of this electrochemical immunoassay for detection of HIgG in serum was validated with the average recovery of 93.9%. In addition, this enzyme-free immunoassay also has the advantages of acceptable reproducibility and specificity, and thus this immunosensing protocol can be extended to the detection of other low-abundant protein biomarkers.  相似文献   

9.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

10.
This paper introduces strategies for enhancement of a surface plasmon resonance (SPR) signal by adopting colloidal gold nanoparticles (AuNPs) and a SiO2 layer on a gold surface. AuNPs on SiO2 on a gold surface were compared with an unmodified gold surface and a SiO2 layer on a gold surface with no AuNPs attached. The modified surfaces showed significant changes in SPR signal when biomolecules were attached to the surface as compared with an unmodified gold surface. The detection limit of AuNPs immobilized on a SPR chip was 0.1 ng mL−1 for the prostate-specific antigen (PSA), a cancer marker, as measured with a spectrophotometer. Considering that the conventional ELISA method can detect ∼10 ng mL−1 of PSA, the strategy described here is much more sensitive (∼100 fold). The enhanced shift of the absorption curve resulted from the coupling of the surface and particle plasmons by the SiO2 layer and the AuNPs on the gold surface.  相似文献   

11.
In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL−1 with an extremely low detection limit down to 0.61 pg mL−1. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.  相似文献   

12.
The present study described a novel fluorescence enzyme-linked immunosorbent assay (ELISA) used to detect ochratoxin A (OTA) by using the glucose oxidase (GOx)-mediated fluorescence quenching of mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs), in which GOx was used as an alternative to horseradish peroxidase (HRP) for the oxidization of glucose into hydrogen peroxide (H2O2) and gluconic acid. The MPA-QDs were used as a fluorescent signal output, whose fluorescence variation was extremely sensitive to the presence of H2O2 or hydrogen ions in the solution. Under the optimized conditions, the proposed fluorescence ELISA demonstrated a good linear detection of OTA in corn extract from 2.4 pg mL−1 to 625 pg mL−1 with a limit of detection of 2.2 pg mL−1, which was approximately 15-fold lower than that of conventional HRP-based ELISA. Our developed fluorescence immunoassay was also similar to HRP-based ELISA in terms of selectivity, accuracy, and reproducibility. In summary, this study was the first to use the GOx-mediated fluorescence quenching of QDs in immunoassay to detect OTA, offering a new possibility for the analysis of other mycotoxins and biomolecules.  相似文献   

13.
In this work, poly(diallyldimethylammonium chloride) (PDDA) protected Prussian blue/gold nanoparticles/ionic liquid functionalized reduced graphene oxide (IL-rGO-Au-PDDA-PB) nanocomposite was fabricated. The resulting nanocomposite exhibited high biocompatibility, conductivity and catalytic activity. To assess the performance of the nanocomposite, a sensitive sandwich-type immunosensor was constructed for detecting alpha-fetoprotein (AFP). Greatly enhanced sensitivity for this immunosensor was based on triple signal amplification strategies. Firstly, IL-rGO modified electrode was used as biosensor platform to capture a large amount of antibody due to its increased surface area, thus amplifying the detection response. Secondly, a large number of Au-PDDA-PB was conjugated on the surface of IL-rGO, which meant the enrichment of the signal and the more immobilization of label antibody. Finally, the catalytic reaction between H2O2 and the IL-rGO-Au-PDDA-PB nanocomposite further enhanced the signal response. The signals increased linearly with AFP concentrations in the range of 0.01–100 ng mL−1. The detection limit for AFP was 4.6 pg mL−1. The immunosensor showed high sensitivity, excellent selectivity and good stability. Moreover, the immunosensor was applied to the analysis of AFP in serum sample with satisfactory result.  相似文献   

14.
The paper reports a highly sensitive enzyme free electrochemical immunoassay (EFEIA) for the detection of herbicide chlorsulfuron. The assay is based upon oxidative gold nanoparticle (GNP) dissolution in an acidic solution. The consequent release of large amounts of gold (Au) metal ions after dissolution of gold nanoparticles tagged to antibody leads to the development of sensitive stripping voltammetry based immunoassay. The detection is made possible by the reduction of Au3 + ions at the screen printed electrode surface followed by metal analysis by using the square wave voltammetry technique. The sensitivity of chlorsulfuron detection by competitive assay procedure was 6.7 pg mL− 1 for EFEIA in marked contrast to optical detection using Standard ELISA procedure that gives a sensitivity of 4.97 ng mL− 1.  相似文献   

15.
An amplified electrochemical impedimetric aptasensor for ochratoxin A (OTA) was developed with picomolar sensitivity. A facile route to fabricate gold nanoparticles covalently bound reduced graphene oxide (AuNPs–rGO) resulted in a large number of well-dispersed AuNPs on graphene sheets with tremendous binding sites for DNA, since the single rGO sheet and each AuNP can be loaded with hundreds of DNA strands. An aptasensor with sandwich model was fabricated which involved thiolated capture DNA immobilized on a gold electrode to capture the aptamer, then the sensing interface was incubated with OTA at a desired concentration, followed by AuNPs–rGO functionalized reporter DNA hybridized with the residual aptamers. By exploiting the AuNPs–rGO as an excellent signal amplified platform, a single hybridization event between aptamer and reporter DNA was translated into more than 107 redox events, leading to a substantial increase in charge-transfer resistance (Rct) by 7∼ orders of magnitude compared with that of the free aptamer modified electrode. Such designed aptasensor showed a decreased response of Rct to the increase of OTA concentrations over a wide range of 1 pg mL−1–50 ng mL−1 and could detect extremely low OTA concentration, namely, 0.3 pg mL−1 or 0.74 pM, which was much lower than that of most other existed impedimetric aptasensors. The signal amplification platform presented here would provide a promising model for the aptamer-based detection with a direct impedimetric method.  相似文献   

16.
Xiaoqiang Liu 《Talanta》2009,77(4):1437-1443
Low picograms of the hormone 17β-estradiol were detected at an electrochemical immunosensor. This immunosensor features a gold nanoparticle|Protein G-(LC-SPDP)1-scaffold, to which a monoclonal anti-estradiol capture antibody was immobilised to facilitate a competitive immunoassay between sample 17β-estradiol and a horseradish peroxidase-labelled 17β-estradiol conjugate. Upon constructing this molecular architecture on a disposable gold electrode in a flow cell, amperometry was conducted to monitor the reduction current of benzoquinone produced from a catalytic reaction of horseradish peroxidase. This current was then quantitatively related to 17β-estradiol present in a sample. Calibration of immunosensors in blood serum samples spiked with 17β-estradiol yielded a linear response up to ∼1200 pg mL−1, a sensitivity of 0.61 μA/pg mL−1 and a detection limit of 6 pg mL−1. We attribute these favourable characteristics of the immunosensors to the gold nanoparticle|Protein G-(LC-SPDP) scaffold, where the gold nanoparticles provided a large electrochemically active surface area that permits immobilisation of an enhanced quantity of all components of the molecular architecture, while the Protein G-(LC-SPDP) component aided in not only reducing steric hindrance when Protein G binds to the capture antibody, but also providing an orientation-controlled immobilisation of the capture antibody. Coupled with amperometric detection in a flow system, the immunosensor exhibited excellent reproducibility.  相似文献   

17.
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl4 and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol–H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL−1 to 80 ng mL−1 and with a detection limit of 3.3 pg mL−1 (S N−1 = 3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.  相似文献   

18.
A simple and sensitive electrochemical immunoassay protocol was developed for the detection of carcinoembryonic antigen (CEA) using nanosilver-doped DNA polyion complex membrane (PIC) as sensing interface. To construct such an immunosensor, double-stranded DNA was initially assembled onto the surface of thionine/Nafion-modified screen-printed carbon electrode to adsorb silver ions with positive charges, then silver ions were reduced to nanosilver particles with the aid of NaBH4, and then anti-CEA antibodies were immobilized on the nanosilver surface. Gold nanoparticles conjugated with horseradish peroxidase-labeled anti-CEA were employed as signal antibodies for the detection of CEA with a sandwich-type assay format. Under optimal conditions, the immunosensor exhibited a dynamic range of 0.03-32 ng mL−1 with a low detection limit of 10 pg mL−1 CEA. Intra- and inter-assay imprecision (CVs) were <9.5% and 6.5%, respectively. The response could remain 90.1% of the original current at 30th day. 50 real samples were evaluated using the immunosensor and the enzyme-linked immunosorbent assay, respectively, and received in accordance with those two methods.  相似文献   

19.
A highly sensitive surface plasmon resonance (SPR) immunosensor for the important ErbB2 breast cancer biomarker has been developed. Optimization of the assay has been carried out, including signal enhancement employing gold nanoparticles (GNPs). The effect of the signal amplification of the GNPs has been also studied. The assay has been tested with clinically relevant matrices. Results in 50% human serum yielded a LOD of 180 pg mL−1 which is a concentration 83 times lower than the clinical cut-off. Raw lysates from model breast cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-436) have been also assayed and higher quantities of the ErbB2 protein were clearly observed in the ErbB2 over-expressing case (SK-BR-3). The results confirmed that the simple and highly sensitive SPR immunosensor represents a feasible tool for ErbB2 detection.  相似文献   

20.
An electrochemical label-free immunosensor based on a biotinylated single-chain variable fragment (Sc-Fv) antibody immobilized on copolypyrrole film is described. An efficient immunosensor device formed by immobilization of a biotinylated single-chain antibody on an electropolymerized copolymer film of polypyrrole using biotin/streptavidin system has been demonstrated for the first time. The response of the biosensor toward antigen detection was monitored by surface plasmon resonance (SPR) and electrochemical analysis of the polypyrrole response by differential pulse voltammetry (DPV). The composition of the copolymer formed from a mixture of pyrrole (py) as spacer and a pyrrole bearing a N-hydroxyphthalimidyl ester group on its 3-position (pyNHP), acting as agent linker for biomolecule immobilization, was optimized for an efficient immunosensor device. The ratio of py:pyNHP for copolymer formation was studied with respect to the antibody immobilization and antigen detection. SPR was employed to monitor in real time the electropolymerization process as well as the step-by-step construction of the biosensor. FT-IR demonstrates the chemical copolymer composition and the efficiency of the covalent attachment of biomolecules. The film morphology was analyzed by electron scanning microscopy (SEM).Results show that a well organized layer is obtained after Sc-Fv antibody immobilization thanks to the copolymer composition defined with optimized pyrrole and functionalized pyrrole leading to high and intense redox signal of the polypyrrole layer obtained by the DPV method. Detection of specific antigen was demonstrated by both SPR and DPV, and a low concentration of 1 pg mL−1 was detected by measuring the variation of the redox signal of polypyrrole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号