首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
2.
A multitargeting prodrug ( 2 ) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.  相似文献   

3.
4.
5.
An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 106 copies.  相似文献   

6.
Binding of monoclonal antibodies (mAbs) onto a cell surface triggers antibody‐mediated effector killing by innate immune cells through complement activation. As an alternative to mAbs, synthetic systems that can recruit endogenous antibodies from the blood stream to a cancer cell surface could be of great relevance. Herein, we explore antibody‐recruiting polymers (ARPs) as a novel class of immunotherapy. ARPs consist of a cell‐binding motif linked to a polymer that contains multiple small molecule antibody‐binding motifs along its backbone. As a proof of concept, we employ a lipid anchor that inserts into the phospholipid cell membrane and make use of a polymeric activated ester scaffold onto which we substitute dinitrophenol as an antibody‐binding motif. We demonstrate that ARPs allow for high avidity antibody binding and drive antibody recruitment to treated cells for several days. Furthermore, we show that ARP‐treated cancer cells are prone to antibody‐mediated killing through phagocytosis by macrophages.  相似文献   

7.
Protein semi-synthesis inside live cells from exogenous and endogenous parts offers unique possibilities for studying proteins in their native context. Split-intein-mediated protein trans-splicing is predestined for such endeavors and has seen some successes, but a much larger variety of established split inteins and associated protocols is urgently needed. We characterized the association and splicing parameters of the Gp41-1 split intein, which favorably revealed a nanomolar affinity between the intein fragments combined with the exceptionally fast splicing rate. Following bead-loading of a chemically modified intein fragment precursor into live mammalian cells, we fluorescently labeled target proteins on their N- and C-termini with short peptide tags, thus ensuring minimal perturbation of their structure and function. In combination with a nuclear-entrapment strategy to minimize cytosolic fluorescence background, we applied our technique for super-resolution imaging and single-particle tracking of the outer mitochondrial protein Tom20 in HeLa cells.  相似文献   

8.
Developing monoclonal antibodies (mAbs) for cancer immunotherapy is expensive and complicated. Nanobodies are small antibodies possessing favorable pharmacological properties compared with mAbs, but have limited anticancer efficacy due to the lack of an Fc region and poor pharmacokinetics. In this context, engineered universal endogenous antibody-recruiting nanobodies (UEAR Nbs), as a general and cost-effective approach, were developed to generate functional antibody-like nanobodies that could recapitulate the Fc biological functions for cancer immunotherapy. The UEAR Nbs, composed of the IgG binding domain and nanobody, were recombinantly expressed in E. coli and could recruit endogenous IgGs onto the cancer cell surface and trigger potent immune responses to kill cancer cells in vitro. Moreover, it was proved that UEAR Nbs displayed significantly improved half-lives in vivo. The in vivo antitumor efficacy of UEAR Nbs was demonstrated in a murine model using EGFR positive triple-negative breast cancer (TNBC).

Universal endogenous antibody recruiting nanobodies (UEAR Nbs), composed of IgGs binding domain and nanobody, could redirect endogenous IgGs onto target cell surfaces and evoke potent immune responses to eliminate cancer cells in vitro and in vivo.  相似文献   

9.
Human DNA is exposed to a variety of endogenous and environmental agents that may induce a wide range of damage. The critical role of DNA damage in cancer development makes it essential to develop highly sensitive and specific assays for DNA lesions. We describe here ultrasensitive assays for DNA damage, which incorporate immuno-affinity with capillary electrophoresis (CE) separation and laser induced fluorescence (LIF) detection. Both competitive and non-competitive assays using CE/LIF were developed for the determination of DNA adducts of benzo[a]pyrene diol epoxide (BPDE). A fluorescently labeled oligonucleotide containing a single BPDE adduct was synthesized and used as a fluorescent probe for competitive assay. Binding between this synthetic oligonucleotide and a monoclonal antibody (MAb) showed both 1:1 and 1:2 complexes between the MAb and the oligonucleotide. The 1:1 and 1:2 complexes were separated by CE and detected with LIF, revealing binding stoichiometry information consistent with the bidentate nature of the immunoglobulin G antibody. For non-competitive assay, a fluorescently labeled secondary antibody fragment F(ab′)2 was used as an affinity probe to recognize a primary antibody that was specific for the BPDE-DNA adducts. The ternary complex of BPDE-DNA adducts with the bound antibodies was separated from the unbound antibodies using CE and detected with LIF for quantitation of the DNA adducts. The assay was used for the determination of trace levels of BPDE-DNA adducts in human cells. Analysis of cellular DNA from A549 human lung carcinoma cells that were incubated with low doses of BPDE (32 nM–1 μM) showed a clear dose–response relationship. BPDE is a potent environmental carcinogen, and the ultrasensitive assays for BPDE-DNA adducts are potentially useful for monitoring human exposure to this carcinogen and for studying cellular repair of DNA damage.  相似文献   

10.
A new methodology for the detection and isolation of serine proteases in complex mixtures has been developed. It combines the characterization of crude samples by electrospray tandem mass spectrometry (ESI-MS/MS) in a multi-substrate assay and the differentiated sensitive detection of the responsible enzymes by means of liquid chromatography hyphenated online to biochemical detection (BCD). First, active samples are identified in the multi-substrate assay monitoring the conversion of eight substrates in multiple reaction monitoring in parallel within 60 s. Hereby, the product patterns are investigated and the suitable peptide as substrate for BCD analysis is selected. Subsequently, the active proteases are identified online in the continuous-flow reactor serving as BCD after non-denaturing separation by size-exclusion chromatography and ion-exchange chromatography. For BCD, the selected para-nitroaniline (pNA) labeled peptide is added post-column and is cleaved by eluting proteases under release of the coloured pNA in a reaction coil (reaction time 5 min). The method was optimized and the figures of merit were characterized with trypsin and chymotrypsin serving as the model proteases. For trypsin, a limit of detection in LC–BCD of 0.1 U/mL corresponding to an injected amount of 0.4 ng protein (∼18 fmol) was observed. The BCD signal remained linear for an injected enzyme concentration of 0.3–10 U/mL (1.3–42 ng enzyme). The method was applied to the characterization of the crude venom of the pit viper Bothrops moojeni and the extracellular protease of the pathogenic amoeba Acanthamoeba castellanii. In the two samples, fractions with proteolytic activity potentially interfering with the blood coagulation cascade were identified. The described methodology represents a tool for serine protease screening in complex mixtures by a fast ESI-MS/MS identification of active samples followed by the separation and isolation of active sample constituents in LC–BCD.  相似文献   

11.
Understanding of the association of phagocytosis of polymers with signaling of innate immunity of macrophages is the major purpose of this study. Polymer conjugates have been utilized for clinical therapy of cancer and infections, such as Mycobacterium tuberculosis, as effective vectors of drug-delivery systems. They are incorporated through phagocytosis into macrophages and activate innate immunity signaling, which plays a crucial role in its therapeutic and side effects. Macrophage phagocytosis of polystyrene latex microspheres was examined and assayed by treatment of macrophages with the cholesterol depletor methyl-β-cyclodextrin (MβCD) or the sphingolipid depletor n-octyl-β-D-glucopyranoside (OGP). Expressions of various mRNAs during phagocytosis were quantified by real-time PCR. Phagocytosis of polystyrene latex microspheres by various macrophages, such as murine monocyte-derived macrophage J774, rat alveolar macrophage NR8383, and murine Kupffer cell KC13-2, was suppressed by treatment with MβCD or OGP in a concentration-dependent manner. The expression of mRNAs of TNFα, IL-1β, IL-6 and CXCL10 genes induced by lipopolysaccharide (LPS) was not suppressed by treatment with MβCD in J774 cells. Moreover, genes that were induced by LPS were up-regulated even in the absence of LPS by the phagocytosis of polymer conjugates, but such up-regulations were not suppressed by the treatment with MβCD. It was shown that lipid rafts play a significant role in incorporation of polymer conjugates through phagocytosis of macrophages, but their association with signal transduction in innate immunity is very limited.  相似文献   

12.
Recently molecular targeting therapy has been applied to cancer chemotherapy, although in some cases side-effects are not negligible. Based on our bio-detection concept, that is, protein–protein interaction can be mimicked by using peptides, a novel cell-targeting concept designated peptide-vehicle has been proposed, which has conjugates consisting of the cancer cell recognition and cell penetrating peptides with anticancer drugs. The cancer cell surface protein can be captured by a cyclotide, containing protease resistant d-cystine. A library of cell penetrating peptides has been prepared and conjugated to the cyclotide. Anticancer molecules were recovered after clinical use, which were pooled, purified, and derivatized for loading into the vehicle. The present Letter describes construction of peptide-vehicles, bioconjugates focusing on more efficiency and cancer cell selective delivery for anticancer drugs.  相似文献   

13.
Immunoassay is a powerful tool for rapid detection of food borne pathogens in food safety monitoring. However, conventional immunoassay always suffers from low sensitivity when it employs enzyme-catalyzing chromogenic substrates to generate colored molecules as signal outputs. In the present study, we report a novel fluorescence immunoassay for the sensitive detection of E. coli O157:H7 through combination of the ultrahigh bioactivity of catalase to hydrogen peroxide (H2O2) and H2O2-sensitive mercaptopropionic acid modified CdTe QDs (MPA-QDs) as a signal transduction. Various parameters, including the concentrations of anti-E. coli O157:H7 polyclonal antibody and biotinylated monoclonal antibody, the amounts of H2O2 and streptavidin labeled catalase (CAT), the hydrolysis temperature and time of CAT to H2O2, as well as the incubation time between H2O2 and MPA-QDs, were systematically investigated and optimized. With optimal conditions, the catalase-mediated fluorescence quenching immunoassay exhibits an excellent sensitivity for E. coli O157:H7 with a detection limit of 5 × 102 CFU/mL, which was approximately 140 times lower than that of horseradish peroxidase-based colorimetric immunoassay. The reliability of the proposed method was further evaluated using E. coli O157:H7 spiked milk samples. The average recoveries of E. coli O157:H7 concentrations from 1.18 × 103 CFU/mL to 1.18 × 106 CFU/mL were in the range of 65.88%–105.6%. In brief, the proposed immunoassay offers a great potential for rapid and sensitive detection of other pathogens in food quality control.  相似文献   

14.
IL17A is a widely studied cytokine which plays an important role in autoimmune diseases as well as asthma. In this study, murine IL17a gene fragment was inserted into pET28a-Ag85A and it was expressed as a fusion protein named Ag85A-IL17A. Recombinant protein Ag85A-IL17A was expressed as an open reading frame of 1,287 bp, encoding a polypeptide of 429 amino acid residues with a predicted molecular mass of 50 kDa. It was expressed in Escherichia coli. BL21 and purified by metal affinity chromatography using a nickel–nitrilotriacetic acid column. Bioinformatics revealed that Ag85A-IL17A contained B cell epitopes of IL17A. Purified proteins Ag85A-IL17A and Ag85A were injected with adjuvants into mice then antibody responses in sera were measured by enzyme-linked immunosorbent assay and western blot assay. Experiments showed that purified protein Ag85-IL17A could bind to a standard IL17A antibody and could induce IL17A autoantibody in mice.  相似文献   

15.
A micro enzyme-linked immunosorbent assay (e.l.i.s.a.) has been developed for monitoring the production of human growth hormone (hGH) in E. coli. The method is unusually flexible, as it is possible to modify its conditions to give a sensitive (detection limit 4 ng l?1) or a fast (6 h) version. The assay is reproducible; the between-assay relative standard deviation is 6%. The effects of temperature, incubation time and the concentrations of protein and the most important reagents (the solid-phase antibody and the labelled antibody) are described. The utility of the method is demonstrated in experiments optimizing the conditions for production of hGH in E. coli.  相似文献   

16.
A fluorescein-labeled estradiol derivative was assessed for use in affinity capillary electrophoresis (ACE) in a competitive immunoassay format, in which the fluorescently labeled estradiol competed with unlabeled estradiol for a mouse anti-estradiol antibody. The preparation of the labeled estradiol produced a mixture of fluorescein-containing compounds that led to multiple peaks in the electropherogram and to which the antibody responded differently. Two of the components of the mixture, towards which the mouse antibody showed most affinity, were isolated using fraction collection via capillary electrophoresis (CE). The two fractions of the labeled estradiol products isolated by CE were characterized using mass spectrometric methods. The two active fluorescein-conjugated products differed in the carboxylate on the fluorescein moiety, one having a methyl group instead of the acidic hydrogen for the other. The estradiol antibody showed a stronger binding for the conjugate containing the methyl group, as determined from the estimated binding constants using Scatchard analysis. The isolated fractions of labeled estradiol were shown to be applicable to the ACE immunoassay method.  相似文献   

17.
The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes controlled by membrane structure, permeability and curvature as well as membrane proteins by using a wide range of biochemical, biophysical and microscopic techniques. This review gives an overview of some currently used model biomembrane systems. We will also discuss some key membrane protein properties that are relevant for protein–membrane interactions in terms of protein structure and how it is affected by membrane composition, phase behavior and curvature.  相似文献   

18.
Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO2) aerosols (a mixture of solid and gaseous CO2), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL−1) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO2 aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors.  相似文献   

19.
Epitope mapping is crucial for the characterization of protein-specific antibodies. Commonly, small overlapping peptides are chemically synthesized and immobilized to determine the specific peptide sequence. In this study, we report the use of a fast and inexpensive planar microbead chip for epitope mapping. We developed a generic strategy for expressing recombinant peptide libraries instead of using expensive synthetic peptide libraries. A biotin moiety was introduced in vivo at a defined peptide position using biotin ligase. Peptides in crude Escherichia coli lysate were coupled onto streptavidin-coated microbeads by incubation, thereby avoiding tedious purification procedures. For read-out we used a multiplex planar microbead chip with size- and fluorescence-encoded microbead populations. For epitope mapping, up to 18 populations of peptide-loaded microbeads (at least 20 microbeads per peptide) displaying the primary sequence of a protein were analyzed simultaneously. If an epitope was recognized by an antibody, a secondary fluorescence-labeled antibody generated a signal that was quantified, and the mean value of all microbeads in the population was calculated. We mapped the epitopes for rabbit anti-PA28γ (proteasome activator 28γ) polyclonal serum, for a murine monoclonal antibody against PA28γ, and for a murine monoclonal antibody against the hamster polyoma virus major capsid protein VP1 as models. In each case, the identification of one distinct peptide sequence out of up to 18 sequences was possible. Using this approach, an epitope can be mapped multiparametrically within three weeks.  相似文献   

20.
Huang B  Wu H  Kim S  Kobilka BK  Zare RN 《Lab on a chip》2006,6(3):369-373
Polydimethylsiloxane (PDMS) surfaces can be functionalized with biotin groups by adding biotinylated phospholipids to the PDMS prepolymer before curing. The addition of beta-D-dodecyl-N-maltoside (DDM) in the solution blocks non-specific protein binding on these functionalized PDMS surfaces. We characterize the surface by measuring fluorescently labeled streptavidin binding. Single molecule tracking shows that the phospholipids are not covalently linked to PDMS polymer chains, but the surface functionalization is not removed by washing. We demonstrate the immobilization of biotinylated antibodies and lectins through biotin-avidin interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号