首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid multiplexed analysis of microorganisms is important in water analysis to control bacterial contamination for health and safety reasons. Direct quantification of bacteria by means of flow-through microarray immunoassays requires new analysis strategies for optimising sensitivity and the analysis time. For bacteria and for particles, hydrodynamic forces and sedimentation are the dominating effects for binding on surfaces in a flow-through system, whereas diffusion is insignificant. Therefore, we have implemented a stop and flow technique for quantification of viable E. coli cells. The method, with alternation of resting volume elements and pumping the elements forward, was more effective than continuous-flow approaches for analysis of bacteria. For quantification of viable E. coli cells, a chemiluminescence sandwich immunoassay test format was performed by means of antibody microarrays and flow-injection-based microarray analysis. Antibodies, which served as selective capture molecules, were immobilised on polymer-modified glass surfaces serving as microarray substrate. For the bacteria recognition step, a second detection antibody was used, forming a sandwich immunoassay at each spot of the microarray. Detection was carried out with a horseradish peroxidase catalysed chemiluminescence reaction. All assay steps were conducted with an automated flow-through chemiluminescence microarray readout system. Living E. coli cells could be detected in 67 min with a detection limit of 4 × 105 cells mL−1. By introduction of the stopped-flow technique and optimisation of interaction time and interaction steps the achieved detection of E. coli was faster and two orders of magnitude more sensitive than with a conventional ELISA technique in microplates.  相似文献   

2.
It still confronts an outstanding challenge to screen efficient antibacterial drugs from millions of potential antibiotic candidates. In this regard, a sandwiched microarray platform has been developed to culture live bacteria and carry out high-throughput screening antibacterial drugs. The optimized lectin-hydrogel microarray can be used as an efficient bacterial capturing and culturing platform, which is beneficial to identify spots and collect data. At the same time, a matching drug-laden polyacrylamide microarray with Luria–Bertani (LB) culture medium can be generated automatically and accurately by using a standard non-contacting procedure. A large number of microscale culture chambers (more than 100 individual samples) between two microarrays can be formed by linking two aligned hydrogel spots using LB culture medium, where live bacteria can be co-cultured with drug candidates. Using Staphylococcus aureus (S. aureus) and four well-known antibiotics (amoxicillin, vancomycin, streptomycin and chloramphenicol) as model system, the MIC (minimum inhibitory concentration) values of the antibiotics can be determined by the drug induced change of bacterial growth, and the results demonstrate that the MIC values of amoxicillin, vancomycin and streptomycin are 1.7 μg mL−1, 3.3 μg mL−1 and 10.3 μg mL−1, respectively.  相似文献   

3.
This paper describes the development of a new multiplex immunoassay for simultaneous detection of seven pesticides (triazophos, methyl-parathion, fenpropathrin, carbofuran, thiacloprid, chlorothalonil, and carbendazim). Sixteen pairs of pesticide antibodies and antigens were screened for reactivity and cross-reaction. A microarray chip consisting of seven antigens immobilized on a nitrocellulose membrane was then constructed. Nanogold was employed for labeling and signal amplification to obtain a sensitive colorimetric immunoassay. The direct and indirect detection formats were further compared using primary antibody-gold and secondary antibody-gold conjugates as tracers. An integrated 7-plex immunochip assay based on the indirect model was established and optimized. The detection limits for the pesticides were 0.02–6.45 ng mL−1, which meets detection requirements for pesticide residues. Naked-eye assessment showed the visual detection limits of the assay ranged from 1 to 100 ng mL−1. Spiked recovery results demonstrated that the immunochip assay had potential for multi-analysis of pesticide residues in vegetables and fruits. The proposed microarray methodology is a flexible and versatile tool, which can be applied to other competitive multiplex immunoassays for small molecular compounds.  相似文献   

4.
Protein microarray technology is a powerful, popular tool for the high-throughput analysis of protein interactions. One important use for protein microarray technology is protein quantification by immunoassay, which was originally based on enzyme linked immunosorbent assay (ELISA) methods. Recently, new research and diagnostic applications have created a need for a rapid and easily applied high-throughput protein quantification method. Here, we introduce several novel techniques that address these needs. Our improved protein microarray-based sandwich immunoassay techniques allow researchers to: (1) control the size and shape of protein spots on the microarray using a perforated seal; (2) analyze two proteins within a single spot, thus increasing the number of tests run on a single microarray without increasing the number of protein spots; (3) improve the efficiency and speed of the Ag-Ab interaction through vibratory reagent convection, which increased the signal intensity by more than two-fold and decreased the reaction time from 30 to 10 min. These new techniques will facilitate rapid immunoassays for diagnostic purposes and other research areas utilizing protein microarray analysis, such as investigations of ligand-receptor or protein-small molecule interactions.  相似文献   

5.
We report herein the first development of graphene-polyaniline modified carbon paste electrode (G-PANI/CPE) coupled with droplet-based microfluidic sensor for high-throughput detection of 4-aminophenol (4-AP) in pharmaceutical paracetamol (PA) formulations. A simple T-junction microfluidic platform using an oil flow rate of 1.8 μL/min and an aqueous flow rate of 0.8 μL/min was used to produce aqueous testing microdroplets continuously. The microchannel was designed to extend the aqueous droplet to cover all 3 electrodes, allowing for electrochemical measurements in a single droplet. Parameters including flow rate, water fraction, and applied detection potential (Edet) were investigated to obtain optimal conditions. Using G-PANI/CPE significantly increased the current response for both cyclic voltammetric detections of ferri/ferrocyanide [Fe(CN)6]3−/4− (10 times) and 4-AP (2 times), compared to an unmodified electrode. Using the optimized conditions in the droplet system, 4-AP in the presence of PA was selectively determined. The linear range of 4-AP was 50–500 μM (R2 = 0.99), limit of detection (LOD, S/N = 3) was 15.68 μM, and limit of quantification (LOQ, S/N = 10) was 52.28 μM. Finally, the system was used to determine 4-AP spiked in commercial PA liquid samples and the amounts of 4-AP were found in good agreement with those obtained from the conventional capillary zone electrophoresis/UV–Visible spectrophotometry (CZE/UV–Vis). The proposed microfluidic device could be employed for a high-throughput screening (at least 60 samples h−1) of pharmaceutical purity requiring low sample and reagent consumption.  相似文献   

6.
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography–flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3–6% (n = 6, C = 30 μg L−1) for intra-day and 4–7% (n = 4, C = 30 μg L−1) for inter-day precisions. The limits of detection were in the range of 0.20–0.86 μg L−1. Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples.  相似文献   

7.
A single glass capillary nanopore-based sensing platform for rapid and selective detection of cupric ions is demonstrated by utilizing polyglutamic acid (PGA) as a non-immobilized probe. The detection is based on the significant decrease of ionic current through nanopore and the reversal of ion current rectification responses induced by the chelated cupric ions on the probes when in the presence of cupric ions. PGA shows high selectivity for detecting cupric ions rather than other metal ions. The sensitivity of the sensing platform can be improved about 1–2 orders of magnitude by employing asymmetric salt gradients during the measurements. And the PGA-based nanopore sensing platform shows excellent regenerability for Cu2+ sensing applications. In addition, the method is found effective and reliable for the detection of cupric ions in real samples with small volume down to 20 μL. This nanopore-based sensing platform will find promising practical applications for the detection of cupric ions.  相似文献   

8.
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL−1 and a low detection limit of 0.1 ng mL−1. The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay.  相似文献   

9.
A rapid and sensitive one-step competitive enzyme immunoassay for the detection of FB1 was developed. The anti-idiotypic nanobody–alkaline phosphatase (Ab2β−Nb−AP) was validated by the AP enzyme activity and the properties of bounding to anti-FB1-mAb (3F11) through colorimetric and chemiluminescence analyses. The 50% inhibitory concentration and the detection limit (LOD) of colorimetric enzyme-linked immunosorbent assay (ELISA) for FB1 were 2.69 and 0.35 ng mL−1, respectively, with a linear range of 0.93–7.73 ng mL−1. The LOD of the chemiluminescence ELISA (CLIA) was 0.12 ng mL−1, and the IC50 was 0.89 ± 0.09 ng mL−1 with a linear range of 0.29–2.68 ng mL−1. Compared with LC-MS/MS, the results of this assay indicated the reliability of the Ab2β−Nb−AP fusion protein based one-step competitive immunoassay for monitoring FB1 contamination in cereals. The Ab2β−Nb−AP fusion proteins have the potential to replace chemically-coupled probes in competitive enzyme immunoassay systems.  相似文献   

10.
Plasmonic nanomaterials possessing large‐volume, high‐density hot spots with high field enhancement are highly desirable for ultrasensitive surface‐enhanced Raman scattering (SERS) sensing. However, many as‐prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two‐step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi‐periodic cloud‐like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large‐area accessible dense hot spots. The optimized 3D‐structured SERS substrate exhibits high‐quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10?9 M. Furthermore, the as‐prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10?7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large‐area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS‐based sensors.  相似文献   

11.
Pathogen detection is important for health and safety reasons. Several outbreaks all over the world have shown the need for rapid, qualitative, quantitative, and, particularly, multianalyte detection systems. Hence, a multichannel flow-through chemiluminescence microarray chip for parallel detection of pathogenic bacteria was developed. The disposable chip made of acrylonitrile–butadiene–styrene (ABS) copolymer was devised as a support for a multiplexed sandwich immunoassay. Calibration and measurement was possible in one experiment, because the developed chip contains six parallel flow-through microchannels. Polyclonal antibodies against the pathogenic bacteria Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila were immobilized on the chip by microcontact printing in order to use them as specific receptors. Detection of the captured bacteria was carried out by use of specific detection antibodies labelled with biotin and horseradish peroxidase (HRP)–streptavidine conjugates. The enzyme HRP generates chemiluminescence after adding luminol and hydrogen peroxide. This signal was observed by use of a sensitive CCD camera. The limits of detection are 1.8 × 104 cells mL−1 for E. coli O157:H7, 7.9 × 104 cells mL−1 for L. pneumophila, and 2.0 × 107 cells mL−1 for S. typhimurium. The overall assay time for measurement and calibration is 18 min, enabling very fast analysis.   相似文献   

12.
In this study, using mycotoxin deoxynivalenol (DON) as a model hapten, we developed a nanobody-based environmental friendly immunoassay for sensitive detection of DON. Two nanobodies (N-28 and N-31) which bind to anti-DON monoclonal antibody (MAb) were isolated from a naive phage display library. These nanobodies are clonable, thermally stable and mycotoxin-free products and can be served as coating antigen mimetics in heterologous immunoassay. The half inhibition concentration (IC50) of the immunoassay developed with N-28 and N-31 was 8.77 ± 0.41 ng mL−1 and 19.97 ± 0.84 ng mL−1, respectively, which were 18- and 8-fold more sensitive than the conventional coating antigen (DON-BSA) based immunoassay. In order to better understand the molecular mechanism of antigen mimicry by nanobody, the 3D structure of “nanobody (N-28) - anti-DON MAb” complex was presented and verified by molecular modeling and alanine-scanning mutagenesis. The results showed that hydrogen bond and hydrophobic interaction formed between Thr 102 – Ser 106 of N-28 and CDR H3 residues of anti-DON antibody may contribute to their binding. This novel concept of enhancing sensitivity of immunoassay for DON based on nanobody may provide potential applications in a general method for immunoassay of various food chemical contaminants.  相似文献   

13.
We present an immunoassay microarray flow-through system for the surface-enhanced Raman scattering (SERS) analysis of bacteria. The system has been constructed to support and automatize the nondestructive in situ analysis of different microorganisms in aqueous environment. After the immobilization of the desired antibodies to an activated PEG-coated surface, the chip is placed into the flow cell which is then flushed with the contaminated sample. Finally, colloidal metal nanoparticles are added and the cells are detected label-free by SERS. Here, we introduce the successful imaging of single microorganisms in the flow cell as well as the quantification of microorganisms in water by SERS mapping with a linear range between 4.3 × 103 to 4.3 × 105 cells/mL. The method has potential for routine application, e.g. for drinking water control.  相似文献   

14.
In this work, an automatic multi-channel ink-jet for chemiluminescence (CL) analysis was developed. The four-channel ink-jet device was controlled by a home-made circuit. Differing from the classic flow injection CL, the whole procedure for CL analysis was automatically completed on a hydrophobic glass side. CL reaction of luminal and hydrogen peroxide for the determination of horseradish peroxidase (HRP) was selected as an application to automatic CL analysis platform. All solutions delivered by different channels were precisely ejected to the same position of the glass slide for the CL analysis. The consumption of reaction solution was reduced to nanoliter level. The whole CL analysis could be completed in less than 4 min, which was benefited from the prompt solution mixing in small size of droplet. The CL intensity increased linearly with HRP concentration in the range from 0.01 to 0.5 μg mL−1. The limit of detection (LOD) (S/N = 3) was 0.005 μg mL−1. Finally, the automatic CL system could also be used for the detection of HRP in HRP–protein conjugates, which showed its practical application in immunoassay.  相似文献   

15.
A novel and highly sensitive visible-light photoelectrochemical (PEC) sensor for the detection of 2,4-D has been developed using a nanocomposite of molecularly imprinted gold nanoparticles-polypyrrole polymer (MIP) modified BiOI nanoflake arrays (BiOINFs) as a photoactive electrode (labeled as MIP@BiOINFs). Our results demonstrate that the smart combination of BiOINFs with MIP offers a high-performance photoactive sensing platform. It features the intrinsically excellent visible-light responsive properties of BiOI and prominent recognition ability from MIP. The designed MIP@BiOINF composite dramatically facilitates the PEC determination of 2,4-D. The detection limit for 2,4-D is found to be as low as about 0.04 ng mL 1 (S/N = 3). Moreover, the resulting sensor could be used to detect 2,4-D in spiked soil samples.  相似文献   

16.
An ultrasensitive chemiluminescent (CL) immunoassay system was developed for the detection of tumor marker. This sandwich CL assay method was for the first time designed based on a highly efficient streptavidin-functionalized multi-walled carbon nanotubes (MWCNTs) platform. The glass slide was firstly silylanized with 3-gycidoxypropyltrimethoxysilane (GPTMS) to generate surface epoxy group functionality. Subsequently, the MWCNTs/chitosan solution was mixed with streptavidin solution, and a certain amount of the resulting suspension was dropped on the surface of the epoxy-activated glass substrate to form a firm streptavidin-functionalized MWCNTs platform. The biofunctionalized-MWCNTs platform shows large reactive surface area and excellent biocompatibility. The capture antibody can be efficiently immobilized on the biosensing platform surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as model analyte, the proposed method exhibits wide linear range of 0.001–0.1 ng mL−1 with a low detection limit down to 0.52 pg mL−1. The CL immunoassay system displays 7.9-fold increase in the detection sensitivity compared to the immunosensor without using MWCNTs. Moreover, the resulting immunosensor demonstrates excellent specificity, good reproducibility, and acceptable stability. This streptavidin-functionalized MWCNTs platform opens a novel and promising avenue for fabricating ultrasensitive CL immunoassay system.  相似文献   

17.
A prototype imaging surface plasmon resonance-based multiplex microimmunoassay for mycotoxins is described. A microarray of mycotoxin–protein conjugates was fabricated using a continuous flow microspotter device. A competitive inhibition immunoassay format was developed for the simultaneous detection of deoxynivalenol (DON) and zearalenone (ZEN), using a single sensor chip. Initial in-house validation showed limits of detection of 21 and 17 ng/mL for DON and 16 and 10 ng/mL for ZEN in extracts, which corresponds to 84 and 68 μg/kg for DON and 64 and 40 μg/kg for ZEN in maize and wheat samples, respectively. Finally, the results were critically compared with data obtained from liquid chromatography-mass spectrometry confirmatory analysis method and found to be in good agreement. The described multiplex immunoassay for the rapid screening of several mycotoxins meets European Union regulatory limits and represents a robust platform for mycotoxin analysis in food and feed samples.  相似文献   

18.
In this paper, we report a double-receptor sandwich type fluorescence sensing method for the determination of fructose bisphosphates (FBPs) using fructose 1,6-bisphosphate (F-1,6-BP) as a model analyte based on uranyl–salophen complexes. The solid phase receptor is an immobilized uranyl–salophen (IUS) complex which is bound on the surface of glass slides by covalent bonds. The labeled receptor is another uranyl–salophen complex containing a fluorescence group, or uranyl–salophen–fluorescein (USF). In the procedure of determining F-1,6-BP in sample solution, F-1,6-BP is first adsorbed on the surface of the glass slide through the coordination reaction of F-1,6-BP with IUS. It then binds USF through another coordination reaction to form a sandwich-type structure of IUS-F-1,6-BP-USF. The amount of F-1,6-BP is detected by the determination of the fluorescence intensity of IUS-F-1,6-BP-USF bound on the glass slide. Under optimal conditions, the linear range for the detection of F-1,6-BP is 0.05–5.0 nmol mL−1 with a detection limit of 0.027 nmol mL−1. The proposed method has been successfully applied for the determination of F-1,6-BP in real samples with satisfactory results.  相似文献   

19.
Ochratoxin A (OTA) can contaminate foodstuffs in the ppb to ppm range and once formed, it is difficult to remove. Because of its toxicity and potential risks to human health, the need exists for rapid, efficient detection methods that comply with legal maximum residual limits. In this work we have synthesized an OTA conjugate functionalized with a water-soluble peptide for covalent immobilization on a glass biochip by means of contact spotting. The chip was used for OTA determination with an indirect competitive immunoassay format with flow-through reagent addition and chemiluminescence detection, carried out with the stand-alone automated Munich Chip Reader 3 (MCR 3) platform. A buffer model and real green coffee extracts were used for this purpose. At the present, covalent conjugate immobilization allowed for at least 20 assay-regeneration cycles of the biochip surface. The total analysis time for a single sample, including measurement and surface regeneration, was 12 min and the LOQ of OTA in green coffee extract was 0.3 μg L−1 which corresponds to 7 μg kg−1.  相似文献   

20.
A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL−1 CRP and the limit of detection was 0.05 ng mL−1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号