首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel combination of atom transfer radical polymerization (ATRP) and redox polymerization is here used to allow instrument‐free visualization of special biomolecules for which dynamic polymer growth is used in signal amplification. In this method, the convenient and mild redox polymerization‐assisted amplification with cerium ammonium (IV) nitrate as oxidant at the second stage was achieved by directly using the hydroxyl groups from poly(hydroxyethyl methacrylate) (PHEMA) synthesized via ATRP at the first stage. The brushed polymers poly(hydroxylethyl methacrylate)‐branched‐poly (acrylamide) (PHEMA‐branched‐PAM) prepared by successive ATRP and redox polymerization in situ drastically grew up at the detected biomolecules spot to improve the visibility of biomolecule and simplify the detection procedure. With the proposed strategy, the signal amplification of streptavidin (SA) as model detected biomolecule was investigated on two different substrates such as silicon wafer and gold, respectively. As a result, detection limit of SA was demonstrated on the gold substrates where binding of 1.0 ng/mL SA was differentiable from the background using ellipsometry. Moreover, binding of 0.5 nmol/L DNA led to visually distinguishable spots on the gold surface under mild condition. The proposed method exhibited an efficient amplification performance for molecules detection, and paved a new way for visual diagnosis of biomolecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2791–2799  相似文献   

2.
Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.  相似文献   

3.
Based on the super fluorescence quenching efficiency of graphene oxide and exonuclease III aided signal amplification, we develop a facile, sensitive, rapid and cost-effective method for DNA detection. In the presence of target DNA, the target-probe hybridization forms a double-stranded structure and exonuclease III catalyzes the stepwise removal of mononucleotides from the blunt 3′ termini of probe, resulting in the recycling of the target DNA and signal amplification. Therefore, our proposed sensor exhibits a high sensitivity towards target DNA with a detection limit of 20 pM, which was even lower than previously reported GO-based DNA sensors without enzymatic amplification, and provides a universal sensing platform for sensitive detection of DNA.  相似文献   

4.
Due to their high specificity and affinity towards various targets,along with other unique advantages such as stability and low cost,aptamers are widely applied in analytical techniques.A typical aptamerbased electrochemical biosensor is composed of a aptamer as the biological recognition element and transducer conve rting the biologic interaction into electrical signals for the quantitative measure ment of targets.Improvement of the sensitivity of a biosensor is significantly important in order to achieve the detection of biomolecules with low abundance,and different amplification strategies have been explored.The strategies either employ nanomaterials such as gold nanoparticles to construct electrodes which can trans fer the biological reactions more efficiently,or attempt to obtain enha nced signal through multi-labeled carriers or utilize enzyme mimics to catalyze redox cycling.This review discusses recent advances in signal amplification methods and their applications.Critical assessment of each method is also considered.  相似文献   

5.
MicroRNAs (miRNAs) play an important regulatory role in cells and dysregulation of miRNA has been associated with a variety of diseases, making them a promising biomarker. In this work, a novel biosensing strategy has been developed for label-free detection of miRNA using surface plasmon resonance (SPR) coupled with DNA super-sandwich assemblies and biotin–strepavidin based amplification. The target miRNA is selectively captured by surface-bound DNA probes. After hybridization, streptavidin is employed for signal amplification via binding with biotin on the long DNA super-sandwich assemblies, resulting in a large increase of the SPR signal. The method shows very high sensitivity, capable of detecting miRNA at the concentration down to 9 pM with a wide dynamic range of 6 orders of magnitude (from 1 × 10−11 M to 1 × 10−6 M) in 30 min, and excellent specificity with discriminating a single base mismatched miRNA sequence. This biosensor exhibits good reproducibility and precision, and has been successfully applied to the detection of miRNA in total RNA samples extracted from human breast adenocarcinoma MCF-7 cells. It, therefore, offers a highly effective alternative approach for miRNA detection in biomedical research and clinical diagnosis.  相似文献   

6.
Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered.  相似文献   

7.
A novel series of Schiff base ruthenium complexes that are active catalysts in the field of atom transfer radical polymerization (ATRP), have been prepared. Moreover, when activated with trimethylsilyldiazomethane (TMSD), these species exhibit good catalytic activity in the ring opening metathesis polymerization (ROMP) of norbornene and cyclooctene. The activity for both the ROMP and ATRP reaction is dependent on the steric bulk and electron donating ability of the Schiff base ligand. The control over polymerization in ATRP was verified for the two substrates that exhibit the highest activity, namely MMA and styrene. The results show that the optimal ATRP equilibrium leading to a controlled polymerization, can be established by adjusting the steric and electronic properties of the Schiff base ligand.  相似文献   

8.
A novel amphotropic polymer which could exhibit liquid-crystalline behavior both in the solvent and in the heating process was synthesized through azo polymers grafting from cellulose nanocrystals (CNCs). The CNCs, prepared by acid hydrolysis of filter paper, were characterized by Atomic Force Microscopy (AFM). Poly{6-[4-(4-methoxyphenylazo)phenoxy] hexyl methacrylate}(PMMAZO), which was a liquid-crystalline polymers (LCP), was successfully to graft from CNC via Atom transfer radical polymerization (ATRP). The structure and thermal properties of the PMMAZO-grafted CNC were investigated using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analyses (TGA). Its phase structures and transitions were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The experimental results showed that the PMMAZO-grafted CNC exhibited both types of liquid crystal formation, thermotropic and lyotropic.  相似文献   

9.
10.
Molecular imprinting as a promising and facile separation technique has received much attention because of their high selectivity for target molecules. In this study, the superparamagnetic lysozyme surface-imprinted polymer was prepared by a novel fabricating protocol, the grafting of the imprinted polymer on magnetic particles in aqueous media was done by atom transfer radical polymerization (ATRP), and the properties of the imprinted polymer were characterized in detail. Its high selective adsorption and recognition to lysozyme demonstrated the separation ability of the magnetic imprinted material to template molecule, and it has been used for quick and direct separation of lysozyme from the mixture of standard proteins and real egg white samples under an external magnetic field. Furthermore, the elution of lysozyme from the imprinted material was achieved by PEG/sulphate aqueous two-phase system, which caused lysozyme not only desorption from the imprinted materials but also redistribution in the top and bottom phase of aqueous two-phase system. The aqueous two-phase system exhibited some of the extraction and enrichment effect to desorbed lysozyme. Our results showed that ATRP is a promising method for the protein molecularly imprinted polymer preparation.  相似文献   

11.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

12.
Dong XY  Mi XN  Wang B  Xu JJ  Chen HY 《Talanta》2011,84(2):531-537
An electrochemical approach for the sensitive detection of sequence-specific DNA has been developed. Horseradish peroxidase (HRP) assembled on the Fe3O4 nanoparticles (NPs) were utilized as signal amplification sources. High-content HRP was adsorbed on the Fe3O4 NPs via layer-by-layer (LbL) technique to prepare HRP-functionalized Fe3O4 NPs. Signal probe and diluting probe were then immobilized on the HRP-functionalized Fe3O4 NPs through the bridge of Au NPs. Thereafter, the resulting DNA-Au-HRP-Fe3O4 (DAHF) bioconjugates were successfully anchored to the gold nanofilm (GNF) modified electrode surface for the construction of sandwich-type electrochemical DNA biosensor. The electrochemical behaviors of the prepared biosensor had been investigated by the cyclic voltammetry (CV), chronoamperometry (i-t), and electrochemical impedance spectroscopy (EIS). Under optimal conditions, the proposed strategy could detect the target DNA down to the level of 0.7 fmol with a dynamic range spanning 4 orders of magnitude and exhibited excellent discrimination to two-base mismatched DNA and non-complementary DNA sequences.  相似文献   

13.
A sensitive and selective colorimetric biosensor for the detection of DNA is described, which combines the amplification of self-assembly with the enrichment of horseradish peroxidase.  相似文献   

14.
Organic/inorganic hybrid star‐like nanocomposites from two different octafunctional cubic silsesquioxane (CSSQ) nano‐cage cores and poly(methyl methacrylate) (PMMA) were synthesized using atom transfer radical polymerization (ATRP) at mild conditions, in which octafunctional octakis(3‐hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) and octa(aminophenyl)silsesquioxane (OAPS) nano‐cages were used as ATRP initiators. The polymerization was carried out at 50 °C in acetonitrile/water mixture. 1H‐NMR and GPC were employed to characterize the obtained nanocomposites. GPC data revealed that the resulting nanocomposites exhibit unimodal and narrow molecular weight distributions indicating well‐controlled synthesis and well‐defined hybrid nanocomposites with star architecture. The influence of CSSQ nano‐cages on the thermal property of nanocomposites was investigated using differential scanning calorimetry and thermal gravimetric analysis (TGA). It was observed that the nanocomposites exhibit significantly higher glass transition temperature compared with its linear counterpart because of slow relaxation caused by the star‐like architecture. TGA study, however, did not reveal any significant improvement in thermal stability of nanocomposites as compared with linear PMMA. Finally, field emission scanning electron microscopy images of fractured surfaces of nanocomposite sample films showed well dispersed CSSQ nano‐cages in PMMA matrix without phase separation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 766–776, 2008  相似文献   

15.
A novel chiral restricted access material was synthesized via a combination of atom transfer radical polymerization (ATRP) and click chemistry. Poly(2-methyl-3-butyn-2-ol methacrylate) (pMBMA) was grafted onto porous silica gel by a surface-initiated ATRP in order to synthesize an inner layer for β-cyclodextrin (β-CD) immobilization. The azide-modified β-CD was bound to pMBMA by click chemistry. The results demonstrate that click chemistry provides an effective route for the immobilization of β-CD for chiral discrimination. A second ATRP reaction was then used to graft external poly(glycidyl methacrylate) (pGMA) layer onto the silica gel. The external hydrophilic layer was subsequently created by hydrolysis of the epoxy groups of the pGMA. This bi-layer grafted material exhibited both enantioseparation and protein exclusion. It can be used for the efficient separation of chiral compounds in biological samples with direct injection into an HPLC system.  相似文献   

16.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

17.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   

18.
A new green solvent, cyclopentyl methyl ether (CPME), is used for the first time in solvent mixtures for the successful supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of both activated and non‐activated monomers. The SARA ATRP of methyl acrylate (MA), glycidyl methacrylate (GMA), styrene (Sty), and vinyl chloride (VC) in CPME‐based mixtures is studied and presents similar features to those reported in the literature using other SARA ATRP systems. Moreover, CPME‐based mixtures are suitable solvents for the controlled SARA ATRP of MA using different SARA agents, such as Fe(0), Cu(0), or Na2S2O4. The chemical structure and the retention of the chain‐end functionality of the polymers are confirmed by 1H NMR and MALDI‐TOF analyses and the preparation of a well‐defined PMA‐b‐PVC‐b‐PMA triblock copolymer. The method reported here presents an additional improvement in the search for new ecofriendly ATRP systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2722–2729  相似文献   

19.
The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease Ⅲ(Exo Ⅲ).In the presence of a target protein,a label-free single strand DNA(ssDNA)hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the ExoⅢ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and ExoⅢ-aided recycling amplification.We selected(50-1200 nmol/L)MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs)of 3.68 and 12.83 nmol/L in buffer solution and 10%serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.  相似文献   

20.
The polymerization of N‐vinylcarbazole (NVK) and carbazole methacrylate (CMA) was carried out using controlled radical polymerization methods such as atom transfer radical polymerization (ATRP), single electron transfer (SET)‐LRP, and single electron transfer initiation followed by reversible addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved in the case of NVK by high‐temperature ATRP while ambient temperature SET‐RAFT polymerization was relatively slow and controlled. In the case of CMA, SET‐RAFT is found to be more suitable for the ambient temperature polymerization. The polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The controlled nature of the polymerization is further demonstrated by the synthesis of diblock copolymers from PNVK and PCMA macroinitiators using a new flavanone‐based methacrylate (FMA) as the second monomer. All the polymers exhibited fluorescence. The excimer bands in the homopolymers of PNVK and PCMA were very broad, which may be attributed to the carbazole–carbazole overlap interaction. The scanning electron microscopy analysis of the block copolymer reveals interesting morphological features. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号