首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
样品制备与处理的进展——无溶剂萃取技术   总被引:12,自引:0,他引:12  
黄骏雄 《化学进展》1997,9(2):179-191
本文讨论了现代分析化学的重要领域之一, 样品制备及前处理技术的进展--无溶剂萃取技术。包括气相萃取、超临界流体萃取、膜萃取、固相萃取、固相微萃取等方法。简述了这些方法的原理及其应用, 探讨了样品制备与前处理技术的发展动向。  相似文献   

2.
对氨基酚络合萃取机理的探讨   总被引:1,自引:0,他引:1  
魏凤玉  韦洪屹 《应用化学》2005,22(10):1155-0
对氨基酚络合萃取机理的探讨;对氨基酚; 络合萃取; 萃取机理; 萃取反应热  相似文献   

3.
吴亚东 《大学化学》2019,34(1):89-91
萃取分离是化学实验中常见的操作,依据多组分热力学中的分配定律,以拉格朗日乘子法推导并从理论上证明只有在均分萃取剂的情况下,才可使萃取效果最佳。且等均萃取的极限萃余率是与萃取剂物理性质、萃取剂用量等多方面因素有关。以实例讨论了不同因素,如萃取剂用量、萃取次数、分配系数对于萃取效果的影响。对于从事化学合成、分析、分离、化工等方向的科研工作者在指定萃取方案时,有一定的借鉴和指导意义,而且可以推广到稀释、固相分离等领域中。  相似文献   

4.
分散液液微萃取技术的研究进展   总被引:1,自引:0,他引:1  
分散液液微萃取是一种基于传统液液萃取的新型样品前处理技术。该文以分散液液微萃取技术中萃取剂的筛选为出发点,综述了低密度萃取剂、辅助萃取剂、反萃取剂和离子液体等低毒性萃取剂在该技术中的应用,以及应用自制装置、溶剂去乳化、悬浮萃取剂固化,辅助萃取,反萃取和离子液体-分散液液微萃取等萃取模式;并简要评述了该技术与液液萃取、固相萃取、固相微萃取、分散固相萃取、基质固相分散萃取、超临界流体萃取、超声辅助萃取等其他样品前处理技术的联用特性。  相似文献   

5.
基于单级手性萃取数学模型和质量守恒定律,建立了多级离心手性萃取数学模型,设计了多级离心萃取数学模型程序,并对多级离心萃取分离苯基琥珀酸(PSA)对映体进行了模拟.模拟了相比、萃取剂浓度、对映体浓度、进料位置和萃取级数等工艺参数对萃取效果(产物纯度和产率)的影响.模拟结果表明,考察的工艺参数共同影响萃取相和萃余相的产物纯度及产率;采用中间位置进料和较大的W/F相比有利于对称分离.实验发现:采用中间位置进料,10级离心萃取后萃取相中苯基琥珀酸的光学纯度ee(对映体过量)达到56%以上.模拟结果还表明,采用26级离心萃取器,中间进料,逆流分级萃取,萃取相及萃余相中的光学纯度ee都能达到98%以上.  相似文献   

6.
稀土是对于现代工业发展至关重要的一组元素,全球对稀土产品的需求量仍在持续增长.然而,稀土的萃取分离生产过程始终伴随环境污染问题,降低酸碱消耗始终是稀土萃取分离理论与技术研究的追求目标.在串级萃取理论的指导下,稀土萃取分离工艺流程的运行经济性不断提升.尤其是2000年后联动萃取分离工艺的出现,使得稀土萃取分离流程的酸碱消...  相似文献   

7.
分析化学中的溶剂萃取技术   总被引:3,自引:0,他引:3  
综述了近年来溶剂萃取在分析化学中应用的发展趋势。对溶剂萃取所发展的超临界流体萃取、固相萃取、固相微萃取及膜萃取方面作了重点叙述。引用文献35篇。  相似文献   

8.
报道了6个具有不同烷基结构的新型中性双配位有机磷萃取剂——二烷氧基膦酰乙酸酯(R_1O)_2PO-CH_2-CO-OR_2对镧系元素的萃取性能和规律。该类萃取剂中二个配位基团P=O和C=O附近的酯烷基R_1和R_2的结构变化明显地影响其对镧系元素的萃取能力,分配系数随着镧系元素原子序数的增大而呈双峰效应,萃取机理与一般中性溶剂化络合萃取相似。萃取配台物中镧系元素与配体的摩尔比为1:3,并用元素分析、分子量测定和红外光谱对二丁氧基膦酰乙酸异丙酯与硝酸镧配合物进行了研究。  相似文献   

9.
本文首次报道了标题试剂H2A对钯的萃取行为,确定了萃取物的组成,讨论了萃取机理,算出了萃取平衡常数.通过化学分析、红外及拉曼光谱、紫外光谱,研究得出了萃合物的结构,并且实现了H2A从钯-铂混合溶液中选择性萃取钯.  相似文献   

10.
金属离子的超临界流体萃取技术的进展   总被引:4,自引:0,他引:4  
超临界流体萃取技术在分离方面发展迅速,应用前景十分广泛。文中综述了超临界流体技术的萃取机理及对金属离子萃取的研究。  相似文献   

11.
Grard S  Morin P  Ribet JP 《Electrophoresis》2002,23(15):2399-2407
Throughout the separation of chiral basic drugs by capillary electrophoresis (CE) with neutral hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral selector, the sensitivity of detection has been improved by using field-amplified sample injection (FASI). In the present work, this on-line stacking method has been used to detect low ng/mL levels of cationic enantiomers of a new adrenoreceptor antagonist in plasma. A systematic study of the parameters affecting on-line concentration of these enantiomers (nature of the preinjection plug, composition of sample solvent, injection times of water and sample plugs) has been performed enabling the detection sensitivity of antagonist enantiomers to be improved by 180 times compared with usual hydrodynamic injection. The quantification of each adrenoreceptor antagonist enantiomer in plasma samples was then performed in the 2-100 ng/mL (or 8-400 nM) concentration range after a solid-phase extraction step. Using this FASI-CE-UV procedure, the limit of quantification (LOQ) for each enantiomer was in the low ng/mL concentration range (3 ng/mL or 10 nM).  相似文献   

12.
This work presents a capillary electrophoresis methodology for the enantiodetermination of cathinones in urine employing a liquid–liquid extraction sample pretreatment. The cathinones were enantioseparated by adding a mixture of 8 mM 2‐hydroxypropyl β‐cyclodextrin and 5 mM β‐cyclodextrin to the background electrolyte, which consists of 70 mM of monosodium phosphate aqueous solution at pH 2.5. Field‐amplified sample injection was used as preconcentration strategy to improve the sensitivity. We studied various parameters that affect this stacking strategy, in particular, the sample solvent and its pH, the presence or absence of a low conductivity solvent plug introduced before the sample injection, the nature and volume of this plug, and the voltage and time of the electrokinetic injection of the sample. The optimum conditions were achieved by injecting a plug of isopropanol:H2O 50/50 at 50 mbar for 5 s prior to the electrokinetic injection of the sample prepared in an aqueous solution of HCl 10?6 M. The sensitivity enhancement factors were from 562 to 601 in terms of peak area and from 444 to 472 in terms of peak height. The method was validated by analyzing spiked urine samples, obtaining a linear range of 25 to 1000 ng/mL and limits of detection ranging from 15 to 45 ng/mL.  相似文献   

13.
JP Quirino  AT Aranas 《Electrophoresis》2012,33(14):2167-2175
In this paper, by injecting a SDS micellar plug before the sample prepared in aqueous organic solvents, we show the on-line sample preconcentration of cations via micelle to solvent stacking (MSS) using solvents of as low as 30%. This extends the choice of stacking techniques to include moderate amounts of organic solvent in the sample. The approach is akin to in-line solid phase extraction where the micellar plug acted as a transient micellar phase extractor. Basic studies were conducted (e.g. type and amount of organic solvent in the sample). The calculated sensitivity enhancement factors based on LOD obtained for the six test antipsychotic drugs were from 41 to 68. The peak signals were linear (R2 > 0.99) from 0.2 to 10.0 μg/mL. The intraday and interday reproducibility (n = 10) for migration time, peak height, and corrected peak area were from 0.2 to 13.6%. The technique was also tested on spiked wastewater sample with minimal sample treatment (i.e. dilution and centrifugation).  相似文献   

14.
A method was developed to determine 2‐mercaptobenzimidazole in water and urine samples using dispersive liquid–liquid microextraction technique coupled with ultraviolet–visible spectrophotometry. It was essential to peruse the effect of all parameters that can likely influence the performance of extraction. The influence of parameters, such as dispersive and extraction solvent volume and sample volume, on dispersive liquid–liquid microextraction was studied. The optimization was carried out by the central composite design method. The central composite design optimization method resulted in 1.10 mL dispersive solvent, 138.46 μL extraction solvent, and 4.46 mL sample volume. Under the optimal terms, the calibration curve was linear over the range of 0.003–0.18 and 0.007–0.18 μg/mL in water and urine samples, respectively. The limit of detection and quantification of the proposed approach for 2‐mercaptobenzimidazole were 0.013 and 0.044 μg/mL in water samples and 0.016 and 0.052 μg/mL in urine samples, respectively. The method was successfully applied to determination of 2‐mercaptobenzimidazole in urine and water samples.  相似文献   

15.
Dispersive liquid–liquid microextraction (DLLME) has been used for preconcentration of trihalomethanes (THMs) in drinking water. In DLLME an appropriate mixture of an extraction solvent (20.0 μL carbon disulfide) and a disperser solvent (0.50 mL acetone) was used to form a cloudy solution from a 5.00-mL aqueous sample containing the analytes. After phase separation by centrifugation the enriched analytes in the settled phase (6.5 ± 0.3 μL) were determined by gas chromatography with electron-capture detection (GC–ECD). Different experimental conditions, for example type and volume of extraction solvent, type and volume of disperser solvent, extraction time, and use of salt, were investigated. After optimization of the conditions the enrichment factor ranged from 116 to 355 and the limit of detection from 0.005 to 0.040 μg L−1. The linear range was 0.01–50 μg L−1 (more than three orders of magnitude). Relative standard deviations (RSDs) for 2.00 μg L−1 THMs in water, with internal standard, were in the range 1.3–5.9% (n = 5); without internal standard they were in the range 3.7–8.6% (n = 5). The method was successfully used for extraction and determination of THMs in drinking water. The results showed that total concentrations of THMs in drinking water from two areas of Tehran, Iran, were approximately 10.9 and 14.1 μg L−1. Relative recoveries from samples of drinking water spiked at levels of 2.00 and 5.00 μg L−1 were 95.0–107.8 and 92.2–100.9%, respectively. Comparison of this method with other methods indicates DLLME is a very simple and rapid (less than 2 min) method which requires a small volume of sample (5 mL).  相似文献   

16.
Wang X  Fu L  Wei G  Hu J  Zhao X  Liu X  Li Y 《Journal of separation science》2008,31(16-17):2932-2938
A new method for the determination of four aromatic amines in water samples was developed by using dispersive liquid-liquid microextraction (DLLME) technique combined with HPLC-variable wavelength detection (HPLC-VWD). In this extraction method, 0.50 mL methanol (as dispersive solvent) containing 25.0 microL tetrachloroethane (as extraction solvent) was rapidly injected by a syringe into 5.00 mL water sample. Accordingly, a cloudy solution was formed. After centrifugation for 2 min at 4000 rpm, the fine droplets of the tetrachloroethane containing the analytes were sedimented in the bottom of the conical test tube (7+/-0.2 microL). Then, 5.0 microL of the settled phase was determined by HPLC-VWD. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time, and salt concentration were optimized. Under the optimum conditions, the enrichment factors ranged from 41.3 to 94.5. Linearity was observed in the range of 5-5000 ng/mL. The LODs based on S/N of 3 ranged from 0.8 to 1.8 ng/mL. The RSDs (for 400 ng/mL of p-toluidine and o-chloroaniline, 100 ng/mL of p-chloroaniline and p-bromoaniline) varied from 4.1 to 5.3% (n=6). The water samples collected from rivers and lakes were successfully analyzed by the proposed method and the relative recoveries were in the range of 85.4-111.7% and 90.2-101.3%, respectively.  相似文献   

17.
Xiao Q  Hu B  Yu C  Xia L  Jiang Z 《Talanta》2006,69(4):848-855
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus pesticides (OPPs) in water and fruit juice by gas chromatography (GC) with flame photometric detection (GC-FPD). The significant parameters affecting the SDME performance such as selection of microextraction solvent, solvent volume, extraction time, stirring rate, sample pH and temperature, and ionic strength were studied and optimized. Two types of SDME mode, static and cycle-flow SDME, were evaluated. The static SDME procedure provided more sensitive analysis of the target analytes. Therefore, static SDME with tributyl phosphate (TBP) as internal standard was selected for the real sample analysis. The limits of detection (LODs) in water for the six studied compounds were between 0.21 and 0.56 ng/mL with the relative standard deviations ranging from 1.7 to 10.0%. Linear response data was obtained in the concentration range of 0.5-50 ng/mL (except for dichlorvos 1.0-50 ng/mL) with correlation coefficients from 0.9995 to 0.9999. Environmental water sample collected from East Lake and fruit juice samples were successfully analyzed using the proposed method, but none of the analytes in both lake water and fruit juice were detected. The recoveries for the spiked water and juice samples were from 77.7 to 113.6%. Compared with the conventional methods, the proposed method enabled a rapid and simple determination of organophosphorus pesticides in water and fruit juice with minimal solvent consumption and a higher concentration capability.  相似文献   

18.
Solvent-bar microextraction (SBME) based on two-phase (water-to-organic) extraction was for the first time used as the sample pretreatment method for the non-aqueous capillary electrophoresis (NACE) of herbicides of environmental concern. Due to the compatibility of the extractant organic solvent and the NACE separation system, the extract could be introduced directly to the CE system after SBME. Through investigations of the effect of sample pH, extraction time, agitation speed and salt addition on extraction efficiency, the most suitable extraction conditions were determined: sample solution at a pH of 1, without added salt, and stirring at 700 revolutions per minute for 30 min. SBME as applied here was also compared with single-drop microextraction and hollow fiber-protected liquid-phase microextraction. SBME showed the highest extraction efficiency. In addition, field-amplified sample injection with pre-introduced organic solvent plug removal using the electroosmotic flow as a pump (FAEP) was used to enhance the sensitivity further in NACE. Based on studies of the effect of different organic solvents, different lengths of the organic plugs and different volumes of sample injection on stacking efficiency under the most suitable separation conditions, methanol was found to be the most efficient solvent for on-line preconcentration. Combined with SBME, FAEP-NACE achieved limits of detection of between 0.08 ng/mL and 0.14 ng/mL for the studied analytes. This preconcentration approach for NACE was demonstrated to be amenable to aqueous environmental samples by applying it to spiked river water.  相似文献   

19.
建立了以二乙基二硫代氨基甲酸钠为配位剂,十二醇为萃取剂,乙醇为分散剂的悬浮固化分散液-液微萃取—火焰原子吸收光谱法测定水样中痕量铅的方法。详细探讨了影响萃取效率的因素。优化条件为:二乙基二硫代氨基甲酸钠的用量为10-6 mol,十二醇体积为90.00μL,乙醇体积为1.00 mL,pH为7.00。在最佳条件下,铅的检出限为1.12μg/L,富集倍率为16.00,线性范围5.00~600.00μg/L,对含有20.00μg/L和600.00μg/L Pb的标准溶液平行萃取测定11次,测定结果的RSD分别为3.73%和2.62%。本方法应用于自来水、河水及海水中痕量铅的分析,加标回收率为90.10%~100.70%。  相似文献   

20.
A new method was used for the extraction of organophosphorus pesticides (OPPs) from water samples: dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame photometric detection (GC-FPD). In this extraction method, a mixture of 12.0 microL chlorobenzene (extraction solvent) and 1.00 mL acetone (disperser solvent) is rapidly injected into the 5.00 mL water sample by syringe. Thereby, a cloudy solution is formed. In fact, the cloudy state is because of the formation of fine droplets of chlorobenzene, which has been dispersed among the sample solution. In this step, the OPPs in water sample are extracted into the fine droplets of chlorobenzene. After centrifuging (2 min at 5000 rpm), the fine droplets of chlorobenzene are sedimented in the bottom of the conical test tube (5.0+/-0.3 microL). Sedimented phase (0.50 microl) is injected into the GC for separation and determination of OPPs. Some important parameters, such as kind of extraction and disperser solvent and volume of them, extraction time, temperature and salt effect were investigated. Under the optimum conditions, the enrichment factors and extraction recoveries were high and ranged between 789-1070 and 78.9-107%, respectively. The linear range was wide (10-100,000 pg/mL, four orders of magnitude) and limit of detections were very low and were between 3 to 20 pg/mL for most of the analytes. The relative standard deviations (RSDs) for 2.00 microg/L of OPPs in water with internal standard were in the range of 1.2-5.6% (n=5) and without internal standard were in the range of 4.6-6.5%. The relative recoveries of OPPs from river, well and farm water at spiking levels of 50, 500 and 5000 pg/mL were 84-125, 88-123 and 93-118%, respectively. The performance of proposed method was compared with solid-phase microextraction (SPME) and single drop microextraction. DLLME is a very simple and rapid (less than 3 min) method, which requires low volume of sample (5 mL). It also has high enrichment factor and recoveries for extraction of OPPs from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号