首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work probes the hydration properties and molecular dynamics of hybrid poly(hydroxyethyl-co-ethyl acrylate)/silica hydrogels. Two series of hybrid copolymers were prepared by simultaneous polymerization and silica preparation by sol-gel method, the first with hydroxyethyl acrylate/ethyl acrylate (HEA/EA) composition at 100/0, 90/10, 70/30, 50/50, 30/70, 10/90 and fixed silica content at 20 wt.%, and the second with fixed HEA/EA organic composition at 70/30 and 0, 5, 10 and 20 wt.% of silica. The hydration properties of these systems were studied at 25 °C by exposure to several controlled water vapor atmospheres (water activities 0-0.98) in sealed jars and by immersion in distilled water. Finally, the molecular dynamics of the hydrated hybrids at several levels of hydration was probed with Thermally Stimulated Depolarization Currents (TSDC) in the temperature interval between −150 and 20 °C. The results indicate that a critical region of silica content between 10 and 20 wt.% exists, above which silica is able to form an inorganic network. This silica network prevents the expansion of water clusters inside the hydrogels and subsequently the total stretching of the polymer network without obstructing the water sorption at the first stages of hydration from the dry state. As concerns the copolymer composition, the presence of EA reduces water sorption and formation of water clusters affecting directly to the hydrophilic regions. The TSDC thermograms reveal the presence of a single primary main broad peak denoted as αcop relaxation process, which is closely related to the copolymer glass transition, and of a secondary relaxation process denoted as βsw relaxation, which originates from the rotational motions of the lateral hydroxyl groups with attached water molecules. The single αcop implies structural homogeneity at the nanoscale in HEA-rich samples (xHEA > 0.5), while for high EA content (xEA ? 0.5) phase separation is detected. Both relaxation processes show strong dependence on water content and organic phase composition.  相似文献   

2.
A series of silica-based organic-inorganic nanocomposites, which attempt to mimic the properties of mineralized matrix tissues from natural bone or dentin, have been prepared and characterized as potential candidates for the synthetic matrix of scaffolds for bone or dentin regeneration. The synthesis procedure consisted in the copolymerization of ethyl methacrylate (EMA) and hydroxyethyl acrylate (HEA) during the simultaneous acid-catalyzed sol-gel polymerization of tetraethoxysilane (TEOS) as a silica precursor, giving rise to poly(EMA-co-HEA)/SiO2 nanohybrids with silica contents in the range of 0-30 wt%. Different structures of silica within the organic polymeric matrix were inferred from infrared spectroscopy, energy dispersive X-ray spectroscopy, thermogravimetry, pyrolysis, density assessments, solvent uptake and transmission electron microscopy. TEOS was efficiently hydrolyzed and condensed to silica during the sol-gel process in all cases, and presented a homogeneous distribution in the polymeric matrix, in the form of nanodomains either interdispersed or continuously interpenetrated with the organic network, depending on the silica content. Silica contents above 10% produced co-continuous interpenetrated structures where the silica network reinforces mechanically the organic matrix and at the same time confers bioactivity to the surfaces.  相似文献   

3.
In this work, for the first time, control over the position of maximum emission peak for fluorophore, using embedded tris(8-hydroxyquinoline) aluminum (AlQ3) complexes into different types of host materials, can be achieved. Moreover, the environmental and concentration effects on luminescent properties were studied. In this regard, different concentrations of AlQ3 were embedded into the poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-PBuA) nanoparticles as organic host materials by emulsion polymerization. It is established that the dilution of AlQ3 in the polymer matrix leads to blue-shift of the luminescence maximum up to 0.32 eV compared to pure AlQ3. Moreover, AlQ3 was embedded in SBA-15 type mesoporous silica as an inorganic host material by physical adsorption. Finally, this functionalized mesoporous silica was incorporated into PMMA-co-PBuA transparent matrix by blending method to obtain Co-Poly-AlQ3-SBA-15 as organic–inorganic composite material. It was found that there is no significant wavelength shift on the maximum emission peak of the organic–inorganic composite at various concentrations of AlQ3-SBA-15. The prepared materials were characterized by powder X-ray diffraction (XRD), N2 adsorption–desorption, NMR, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and fluorescence spectra.  相似文献   

4.
Random copolymers of polystyrene-co-polyvinyl triethoxysilane (PS-co-PVTES) were prepared via semi-batch emulsion polymerization with different feed monomer compositions and evaluated as precursors of polystyrene (PS)/silica nanocomposites. Small-angle X-ray scattering (SAXS) profiles acquired from 20 °C to 180 °C showed that, at temperatures higher than glass transition temperature (T g) of PS, the latex particles aggregate. On thermal annealing at 180 °C, silica-rich domains are formed, as corroborated by scanning electron microscopy. Infrared spectroscopy and differential scanning calorimetry analyses showed a reduction of the silanol concentration and an increase in the T g value, respectively. The silica long domain spacing, measured by SAXS, depends on the concentration of vinyl triethoxysilane (VTES) in the feed; this value varied from 35 to 57 nm when the weight ratio of the monomers (styrene/VTES) was 50:50 and 90:10, respectively.  相似文献   

5.
Two-dimensional infrared (2D IR) correlation spectroscopy was applied to study the structural changes occurring in the decomposition of PHEA-co-MMA/SiO2. Complicated absorption spectral changes were observed in the heating process. 2D IR analysis indicates that during heating, covalent bonds, (Si-O-C), between the polymer and the inorganic moiety were formed, which was the main factor in the improvement in thermal properties of the hybrids such as the decomposition temperatures (Td). The thermal stability of the hybrids was also studied by solid-state 29Si MAS NMR spectroscopy and TGA tests. Their results complemented each other well.  相似文献   

6.
A series of polyurethane/polyaniline/silica organic/inorganic hybrids were synthesized via the conventional polyurethane (PU) prepolymer technique. Amine-endcapped polyaniline (PANI) with low molecular weight and higher solubility was firstly synthesized. This PANI oligomer was then used together with nano-silica bearing silanol groups as chain extenders to prepare the conducting polyurethane hybrids. The polyurethane hybrids were designated as PU-xPANI-ySiO2 (x + y = 1). For comparison, the urethane-aniline block copolymer and the PU/silica hybrid were designated as PU-PANI and PU-SiO2, respectively.The structures of PU-PANI, PU-SiO2 and conducting polyurethane hybrids were confirmed by FT-IR, solid-state 13C, and 29Si NMR spectra. In nano-silica containing organic/inorganic conducting polyurethane hybrids, UV-vis spectra revealed the maximum absorption bands similar to that of PU-PANI. X-ray diffraction patterns indicated that these samples are typical of semicrystalline/amorphous materials. SEM image of PU-0.5PANI-0.5SiO2 showed that PANI was dispersed homogeneously and interconnected continuously in the insulating PU-silica matrix. TGA results of the polymer hybrids exhibited higher thermal stabilities and lower decomposition rates than that of PU-PANI both in nitrogen and air. Differential scanning calorimetry (DSC) studies indicated that the polyurethane hybrids had higher glass-transition temperatures (Tg) with the increase of PANI, but lower than that of PU-PANI. Stress-strain curves for all of the polyurethane hybrids showed the elastomeric behavior of typical polyurethanes. The surface resistivity values of all hybrids were about 108 ∼ 1010 Ω/sq. and might meet the requirement of the anti-electrostatic materials.  相似文献   

7.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

8.
Imide-siloxane block copolymer/silica hybrid membranes with covalent bonds were prepared via sol–gel reaction. The structural informations of these hybrid membranes were obtained by using Fourier transform-infrared spectrometry (FT-IR), 29Si nuclear magnetic resonance (29Si NMR), XPS and thermogravimetric analysis (TGA). The gas separation properties of the hybrid membranes were also investigated in terms of organosiloxane (PDMS) or silica content at various temperatures. In the hybrids, the addition of PDMS phase increased the permeabilities of gases such as He, CO2, O2, and N2, indicating that the gas transport occurred mainly through rubbery organic matrix. Meanwhile, the PDMS phase contributed the decreased gas selectivities to nitrogen but the reduction in selectivities was very small in comparison with other siloxane containing polymeric membranes. This might be due to the restriction of chain mobility by the existence of inorganic component such as silica network in the hybrids. Additionally, the increase of silica content in these hybrid membranes considerably retarded the falling-off of gas selectivity at elevated temperature. The increase of silica content in hybrid membranes resulted in well-formed silica networks and hence these inorganic components restricted the plasticization of organic matrix by the thermal segmental motion of organic components, leading to preventing the large decrease of the gas selectivity.  相似文献   

9.
Poly(styrene-co-maleic anhydride)/silica hybrid material has been successfully prepared from styrene–maleic anhydride copolymer and tetraethoxysilane (TEOS) in the presence of a coupling agent (3-aminopropyl)triethoxysilane (APTES) by an in situ sol–gel process. It was observed that the gel time of sol–gel solution was dramatically influenced by the amount of APTES. The hybrid material exhibits optical transparency almost as good as both silica gel and the copolymer. The covalent bonds between organic and inorganic phases were introduced by the aminolysis reaction of the amino group with maleic anhydride units of copolymer to form a copolymer bearing trimethoxysilyl groups, which undergo hydrolytic polycondensation with TEOS. The differential scanning calorimetry (DSC) showed that the glass transition temperature of the hybrid materials increases with increasing of SiO2 composition. Photographs of scanning electron microscopy (SEM) and atomic force microscopy (AFM) inferred that the size of the inorganic particles in the hybrid materials was less than 20 nm. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1607–1613, 1998  相似文献   

10.
Thermal properties of the silica/poly(2,6-dimethyl-1,4-phenylene oxide) films prepared via emulsion polymerized mixed matrix (EPMM) method are investigated, and the impact of the synthesis protocol on the silica content, compatibility between the organic and inorganic phases, and the thermal stability of these nanocomposites is studied. Two series of films, namely EPMM-1S and EPMM-2S, synthesized in one- and two-step process, respectively, with different combinations of surfactant and compatibilizer were prepared. The polymerization of the silica precursor in the films was confirmed by 29Si nuclear magnetic resonance, and its content was investigated by inductively coupled plasma mass spectroscopy analysis. Thermal properties of the EPMM films were investigated by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature (T g) of EPMM films was greater compared to the neat PPO film. However, an increase in T g was not related to the concentration of silica in the film, but rather to the quality of dispersion of synthesized nanoparticles. Despite a lower inorganic loading, EPMM-1S films had a greater T g than EPMM-2S films. On the other hand, both the decomposition temperature and the activation energy for the decomposition were directly related to the silica content in the EPMM films. In general, regardless of the synthesis protocol, the presence of compatibilizer (ethanol) leads to greater inorganic content and improved thermal properties of the EPMM films.  相似文献   

11.
A novel flame-retardant silane containing phosphorus and nitrogen, tetramethyl(3-(triethoxysilyl)propylazanediyl) bis(methylene) diphosphonate (TMSAP), is firstly synthesized and then incorporated into poly(methyl methacrylate) (PMMA) matrix through sol–gel method to produce organic–inorganic hybrids. The chemical structure of TMSAP was confirmed by Fourier transform infrared spectra, 1H nuclear magnetic resonance (NMR) and 31P NMR spectra. The hybrids obtained maintain relatively high transparency, and exhibit a significant improvement in thermal properties, mechanical performance and flame retardancy when compared to pure PMMA, including increased glass transition temperature (T g ) by 11.4 °C, increased onset thermal degradation temperature (T0.1) by 82.6 °C, increased half thermal degradation temperature (T0.5) by 42.0 °C, increased hardness, increased limited oxygen index and decreased heat release rate. Morphological studies of hybrids by scanning electron microscopy (SEM) and 29Si MAS NMR suggest that cross-linked silica network is formed in the hybrids and the inorganic silica particles are distributed well in the polymer matrix. Thermal degradation behaviors investigated by thermogravimetric analysis and char structure analysis studied by SEM and X-ray photoelectron spectroscopy demonstrate the catalytic charring function of TMSAP, and synergistic effect between phosphorus, nitrogen and silicon element. The formation of network structure, homogeneous distribution of silica and the char formation during degradation play key roles in these property enhancements. Detailed mechanisms for these enhancements are proposed.  相似文献   

12.
A novel method, in situ polymerization, was used for the preparation of nylon 6/silica nanocomposites, and the mechanical properties of the nanocomposites were examined. The results showed that the tensile strength, elongation at break, and impact strength of silica-modified nanocomposites exhibited a tendency of up and down with the silica content increasing, while those of silica-unmodified nanocomposites decreased gradually. It also exhibited that the mechanical properties of silica-modified nanocomposites have maximum values only when 5% silica particles were filled. Based on the relationship between impact strength of the nanocomposites and the matrix ligament thickness τ, a new criterion was proposed to explain the unique mechanical properties of nylon 6/silica nanocomposites. The nylon 6/silica nanocomposites can be toughened only when the matrix ligament thickness is less than τc and greater than τa, where τa is the matrix ligament thickness when silica particles begin to aggregate, and τc is the critical matrix ligament thickness when silica particles begin to toughen the nylon 6 matrix. The matrix ligament thickness, τ, is not independent, which related with the volume fraction of the inorganic component because the diameter of inorganic particles remains constant during processing. According to the observation of Electron Scanning Microscope (SEM), the process of dispersion to aggregation of silica particles in the nylon 6 matrix with increasing of the silica content was observed, and this result strongly supported our proposal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 789–795, 1998  相似文献   

13.
This study aims at determining the compatibility behavior of nanoparticles surface with fluorinated matrices to obtain a homogenous dispersion and better composites properties. First, modified silica nanoparticles by C6F13I and C6F13‐C2H4‐SH led to various fluorinated silica of different massic concentrations and grafting rates. The dispersion of these nanoparticles (in 5 wt %) into molten poly(VDF‐co‐HFP) and poly(TFE‐co‐HFP) matrices were studied as well as the hydrophobic, mechanical, and thermal properties of both fluorinated copolymers and resulting composites. In both series, the storage modulus of nanocomposites increased while the melting (Tm) and decomposition (T10%) temperatures varied with the polymer matrix. They increased for poly(VDF‐co‐HFP) composites (Tm= 134 to 144 °C and T10%= 441 to 464 °C) but decreased for poly(TFE‐co‐HFP) nanocomposites (Tm= 276 to 268 °C and T10%= 488 to 477 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1512–1522  相似文献   

14.
The effect of silica nanoparticles on the gas separation properties of ethylene vinyl acetate (EVA) copolymer containing 28% vinyl acetate has been investigated. The EVA and hybrid EVA–silica membranes were prepared via thermal phase inversion method. Silica nanoparticles prepared by hydrolysis of tetraethylorthosilicate (TEOS), through the sol–gel mechanism. The prepared membranes were characterized using FT-IR, SEM, DSC and XRD methods. FT-IR and SEM results indicated the nanoscale dispersion of silica particles in polymer matrix. As confirmed by XRD and DSC analyses, increasing the silica content enhances the amorphous regions significantly. Gas permeation of EVA–silica nanocomposite membranes with silica contents of 5, 6 and 10 wt.% was studied for N2, O2, CO2 and CH4 single gases at pressures of 4, 6 and 8 bar. The obtained results suggest a significant increase in permeability of all gases and an increase in CO2/N2 and CO2/CH4 gases selectivities upon increasing the silica content. The possible reasons for such behavior were stated and discussed. The pressure dependence of the gas permeabilities of the membranes was also investigated.  相似文献   

15.
 The chemical synthesis and the physicochemical properties of stable poly(vinyl formamide-co-vinyl amine)/silica hybrid particles are presented. Copolymers of poly(vinyl formamide) (PVFA) and poly(vinyl amine) (PVAm) and their protonated forms were adsorbed onto silica from aqueous solutions. The influences of the pH strength and the ion concentration of the aqueous solution as well as the copolymer composition (degree of hydrolyzation of PVFA), and the molecular mass on the adsorption process were investigated by electrokinetic measurements, potentiometric titration, and quantitative elemental analyses. Silica surface-charge neutralization is achieved at a pH strength above 10 for highly hydrolyzed (95%) PVFA polymers. Decreasing the amino content in the PVAm chain shifts successively both the point of zero charge and the isoelectric point to lower pH values. PVFA-co-PVAm layers onto silica are adsorbed weakly. To fix these layers irreversibly, cross-linking reactions with (4,4′-diisocyanate)diphenyl methane were carried out on the surface of solid PVFA-co-PVAm/silica hybrid particles suspended in acetone. The cross-linking reaction, which is connected with the conversion of amino groups, is also a tool to control the surface charge of the PVFA-co-PVAm/silica hybrids. X-ray photoelectron spectroscopy and solid-state 13C cross-polarization magic-angle spinning NMR spectroscopy were used to obtain information on the number of and the structure of the functionalized polyelectrolyte layers on silica. The success of cross-linking was also shown by the results of these spectroscopic methods. Received: 28 June 1999 /Accepted: 27 August 1999  相似文献   

16.
Novel polyfluorene copolymers with pendant hydroxyl groups, poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐1,4‐phenylene] (PFP‐OH) and poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐4,7‐(2,1,3‐benzothiadiazole)] (PFBT‐OH) were prepared. Acid‐catalyzed polycondensations of tetraethoxysilane were carried out in the presence of these polymers to obtain homogeneous hybrids. Photoluminescence spectra of these hybrids suggested the polymers were immobilized in silica matrix retaining their π‐conjugated structures. Further, hybrids of coat film were prepared utilizing perhydropolysilazane as a silica precursor. Their optical properties were examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG dispersion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents. Supported by the National Natural Science Foundation of China (Grant No. 50773068) and Natural Science Foundation of Zhejiang Province (Grant No. Y407011)  相似文献   

18.
The molecular dynamics of carboxylated acrylonitrile-butadiene rubber - silica hybrid materials was investigated. Silica hybrids were formed in situ rubber matrix using varied amounts of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMS), serving also as a cross-linker. Filler-filler and filler-rubber interactions were present, due to the specific nature of these materials. It was found that the amounts of added aminosilane determined the cross-linking density of obtained materials and was the highest with 20 phr DAMS used. The cross-links had ionic nature. Dielectric relaxation spectroscopy (DRS) revealed β, α and α′ relaxation processes. The β relaxation, correlated with the mobility of polymer side groups, was influenced by the weak interaction between both acrylonitrile and carboxylic groups of the rubber and silanol groups of silica. The activation energy for that relaxation was similar for all materials (∼32 kJ mol−1). Both DRS and dynamical mechanical analysis (DMA) demonstrated that the amount of in situ formed silica filler did not significantly influence either the temperature of the α relaxation (correlated with glass transition) or its activation energy. Therefore, that relaxation was caused by free polymer chains, not attached to the silica particles. Similar values of glass transition temperature (Tg) for all hybrids were confirmed by DSC. It appeared that the amplitude of tangent delta (DMA) within Tg was dependent on silica amount. Detected at higher temperature α′ relaxation resulted from the presence of domains, where polymer chains were affected by silica network, geometrical restrictions and morphology of the silica-rich domains.  相似文献   

19.
Hybrid organic–inorganic approaches are used for the synthesis of bifunctional proton exchange membrane fuel cell (PEMFC) membranes owing to their ability to combine the properties of a functionalized inorganic network and an organic thermostable polymer. We report the synthesis of both sulfonic and phosphonic acid functionalized mesostructured silica networks into a poly(vinylidenefluoride‐co‐hexafluoropropylene) (poly(VDF‐co‐HFP) copolymer. These membranes, containing different amounts of phosphonic acid and sulfonic acid groups, have been characterized using FTIR and NMR spectroscopy, SA‐XRD, SAXS, and electrochemical techniques. The proton conductivity of the bifunctional hybrid membranes depends strongly on hydration, increasing by two orders of magnitude over the relative humidity (RH) range of 20 to 100 %, up to a maximum of 0.031 S cm−1 at 60 °C and 100 % RH. This value is interesting as only half of the membrane conducts protons. This approach allows the synthesis of a porous SiO2 network with two different functions, having  SO3H and  PO3H2 embedded in a thermostable polymer matrix.  相似文献   

20.
《先进技术聚合物》2018,29(2):874-883
The concept of mixed matrix membrane comprising dispersed inorganic fillers into a polymer media has revealed appealing to tune the gas separation performance. In this work, the membranes were prepared by incorporation of mesoporous silica into polyurethane (PU). Mesoporous silica particles with different pore size and structures, MCM‐41, cubic MCM‐48 and SBA‐16, were synthesized by templating method and functionalized with 3‐aminopropyltriethoxysilane (APTES). High porosity and aminated surface of the mesoporous silica enhance the adhesion of the particles to the PU matrix. The SEM and FTIR results showed strong interactions between the particles and the PU chains. Moreover, the thermal stability of the hybrid PUs improved compared to the pure polymer. Gas transport properties of the membranes were measured for pure CO2, CH4, O2, and N2 gases at 10 bar and 25°C. The results showed that the gas permeabilities enhanced with increasing in the loading of modified mesoporous silica particles. High porosity and amine‐functionalized particles render opportunities to enhance the gas diffusivity and solubility through the membranes. The enhanced gas transport properties of the mixed matrix membranes reveal the advantages of mesoporous silica to improve the gas permeability (CO2 permeability up to ~70) without scarifying the gas selectivity (α(CO2/N2)~ 30 for 5 wt% SBA‐16 content).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号