首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly [2-(dimethylamino)ethyl methacrylate (DMA)-sodium acrylate (SA)] diblock copolymers were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization exhibits controlled characters: well-controlled molecular weight, narrow molecular weight distribution, molecular weight increasing with polymerization time. The zwitterionic diblock copolymers show rich solution behaviors. Dynamic light scattering (DLS) indicated the formation of micelles and reverse micelles of copolymers is affected by net charge density of copolymers. Microcalorimetry studies showed that the lower critical solution temperature (LCST) increases with incorporation of hydrophilic segments in buffer.  相似文献   

2.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

3.
Amphiphilic block copolymers composed of poly(butyl acrylate) and poly(2-acryloyloxyethyl phosphorylcholine) have been prepared using reversible addition fragmentation transfer (RAFT) polymerisation. The conversion of the polymerisation was determined using online FT NIR spectroscopy. NMR spectroscopy was used not only to support the results obtained from FT NIR spectroscopy but also prove the formation of micelles. Due to the strong aggregation tendency of these block copolymers and the resulting difficulties concerning the molecular weight analysis test experiments were carried out replacing poly(2-acryloyloxyethyl phosphorylcholine) with poly(2-hydroxyethyl acrylate). Micelle size and the aggregation behaviour were investigated using dynamic light scattering. The sizes of the nanocontainers obtained were found to be influenced by the block length as well as the solvent leading to micelles in the range between 40 and 160 nm. The toxicity of the RAFT agent used was then analysed by cell growth inhibition tests.  相似文献   

4.
A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile(PAN-b-PDMSb-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesized for the first time via reversible addition-fragmentation chain transfer polymerization.Reaction kinetics was investigated.PAN-b-PDMS-b-PAN films were prepared by spin-coating on glass chips.Significant order on the film surface morphologies was observed.  相似文献   

5.
Block copolymers consisting of a pentafluorostyrene (PFS) block and a hydrophilic block were synthesized by RAFT polymerisation. The hydrophilic blocks consist of methacrylate derivatives, 4-hydroxystyrene or 4-vinylpyridine monomers. The block copolymers were obtained with narrow molecular weight distributions and the molecular weights were in good agreement with the theoretical values. In addition, a model thiol was reacted with the PFS moieties of the block copolymers. This polymer–analogous reaction was performed under ambient conditions in high yields resulting quantitatively in para-substitution of the pentafluorophenyl rings. Finally, thin films consisting of block copolymers that showed strong phase-segregation behaviour and ordered nanostructured surfaces consisting of both blocks were obtained.  相似文献   

6.
Two synthetic ways were experimented to prepare new architectures of block copolymers made of poly(ethylene glycol) (PEG) and poly(methylthiirane). The coupling of both blocks conveniently end-capped as well as anionic polymerization of methylthiirane initiated by PEG-thiols gave readily the copolymers. Their characterization by 1H NMR, SEC and IR confirmed the expected structures.  相似文献   

7.
Reversible addition fragmentation chain transfer polymerization afforded triple hydrogen‐bonding block copolymers (PBA‐b‐PDAD) with well‐controlled molecular weight and molecular weight distributions (1.2–1.4). The complexation via specific hydrogen bonding between these block copolymers in CHCl3 provided an unprecedented approach for the formation of spherical vesicles. Atomic force microscopy and dynamic light‐scattering measurements revealed that the resultant polymeric vesicles were about 100 nm in radius. Triple hydrogen‐bonding interactions between maleimide and PBA‐b‐PDAD resulted in the dissociation of these spherical vesicles, facilitating the guest molecule recognition. The hydrogen‐bonding interaction between maleimide and the PBA‐b‐PDAD was further confirmed by 1H NMR and FTIR spectra. These results indicated that these vesicles of triple hydrogen‐bonding block copolymer could be a potential new vehicle for molecular recognition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1633–1638  相似文献   

8.
Amphiphilic block copolymers were synthesized via a dual initiator chain transfer agent (inifer) that successfully initiated the ring opening polymerization (ROP) of l -lactide (LLA) and subsequently mediated the reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(ethylene glycol) ethyl ether methacrylate (PEGEEMA). The formation of each polymer block was confirmed using 1H nuclear magnetic resonance spectroscopy, as well as gel permeation chromatography, and comprehensive kinetics studies provide valuable insights into the factors influencing the synthesis of well-defined block copolymers. The effect of monomer concentration, reaction time, and molar ratios of inifer to catalyst on the ROP of LLA are discussed, as well as the ability to produce poly(lactide) blocks of different molecular weights. The synthesis of hydrophilic PPEGEEMA blocks was also monitored via kinetics to provide a better understanding of the role the chain transfer agent plays in facilitating the complex and sterically demanding RAFT polymerization of PEGEEMA.  相似文献   

9.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

10.
Copolymerization of styrene and acrylonitrile was carried out via reversible addition‐fragmentation chain transfer process (RAFT) in the presence of cumyl dithiobenzoate with AIBN as initiator. Copolymerization proceeded in a controlled/“living” fashion, and the copolymer composition depended on the feed ratio of monomer pairs. Block copolymers comprising styrene and acrylonitrile (SAN) segments and various functional blocks were synthesized through chain extension using the first blocks as macromolecular chain transfer agents (macroCTAs). Since the polymerization of both blocks proceeded through the RAFT process, the resulting block copolymers exhibited relatively narrow molecular weight distribution, with polydispersity indices in the range of 1.29–1.46. Gel permeation chromatography (GPC), and 1H NMR and FTIR measurements confirmed the successful synthesis of the functionalized block copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2260–2269, 2006  相似文献   

11.
Well-defined amphiphilic block copolymers composed of hydrophilic and hydrophobic blocks linked through an acid-labile acetal bond were synthesized directly by RAFT polymerization using a new poly(ethylene glycol) (PEG) macroRAFT agent modified with an acid-labile group at its R-terminal. The new macroRAFT agent was used for polymerization of poly(t-butyl methacrylate) (PtBMA) or poly(cholesterol-methacrylate) (PCMA) to synthesize well-defined block copolymers with a PEG block sheddable under acidic conditions. The chain extension polymerization kinetics showed known traits of RAFT polymerization. The molecular weight distributions of the copolymers prepared using the new macroRAFT agent remained below 1.2 during the polymerizations and the molecular weight of the copolymers was linearly proportional to monomer conversions. The acid-catalyzed hydrolysis behavior of the PEG-macroRAFT agent and the PEG-b-PtBMA (Mn = 13,600 by GPC, PDI = 1.10) was studied by GPC, 1H NMR and UV–vis spectroscopy. The half-life of acid-hydrolysis was 70 min at pH 2.2 and 92 h at pH 4.0. The potential use of the pH-labile shedding behavior of the copolymers was demonstrated by conjugating a thiol-modified siRNA to ω-pyridyldisulfide modified PEG-b-PCMA. The resultant PEG-b-PCMA-b-siRNA triblock modular polymer released PCMA-b-siRNA segment in acidic and siRNA segment in reductive conditions, as confirmed by polyacrylamide gel electrophoresis.  相似文献   

12.
This study reports the synthesis of novel poly(1-vinylimidazole)-b-poly(9-vinylcarbazole) (PVI-b-PVK) block copolymers with varying monomer ratios using reversible addition-fragmentation chain-transfer (RAFT) polymerization and their incorporation in responsive composite materials. Specifically, non-covalent exfoliation of two different conductive fillers, multi-walled carbon nanotubes (MWCNTs) or reduced graphene oxide (rGO), was studied. The percolation threshold of the synthesized nanocomposites was dependent on the polymer used for dispersion, showing a better affinity of the fillers for block copolymers with higher relative carbazole content. Resistivity measurements showed selective variation in the resistance signal when the materials were exposed to various organic solvents and acids, providing a good basis for the design of sensing devices.  相似文献   

13.
The poly(amidoamine)s (PAAs) ISA 1 and ISA 23 display pH-dependent conformational change and pH-dependent membrane perturbation. These properties confer potential for use as endosomolytic polymers for intracytoplasmic delivery of toxins and genes. Both polymers are relatively non-toxic, and moreover ISA 23 has the beneficial property in vivo, of being non hepatotropic when administered intravenously. Although ISA 23 and ISA 1 demonstrate ability to transfect cells, ISA 1 is also able to promote intracellular delivery of non-permeant toxins. The aim of this study was to synthesise random and block copolymers of ISA 1 and ISA 23 and investigate whether these second generation hybrids would allow optimisation of PAA biological characteristics. Random and block copolymers of ISA 1 and ISA 23 were synthesised by hydrogen transfer polyaddition to generate a library of PAAs with an ISA 23:ISA 1 molar ratios of 2:1 to 4:1. The resultant polymers have a pI slightly below 7.4 and a M(w) of 19,900-49,000 g/mol and a M(n) of 13,100-24,100 g/mol. Whereas none of the random or block copolymers were haemolytic at pH 7.4 all demonstrated pH-dependent membrane activity. At pH 5.5 they caused 50-60% haemoglobin (Hb) release over 1 h. This was slightly less than that seen for ISA 23 (80% Hb release). None of the copolymers were cytotoxic against B16F10 cells during a 72 h incubation (IC(50) > 2 mg/ml; MTT assay). The ability of the random and block copolymer PAAs to deliver the toxin gelonin was also examined, but only ISA 1 and the block copolymer B2 (ISA 23:ISA 1 at a 2:1 molar ratio) were able to promote intracellular delivery, as measured by cytotoxic activity. It would be interesting to study the body distribution of B2 and determine whether this toxin-delivering PAA is able to escape liver capture.  相似文献   

14.
The preparation of block copolymers consisting of poly(4-vinylpyridine) (P4VP) by atom transfer radical polymerization (ATRP) was investigated. The goal was to synthesize water-soluble block copolymers with poly(ethylene oxide) (PEO) as first block, a water-soluble polymer at any pH. First, a PEO macroinitiator was prepared for the ATRP block copolymerization of 4-vinylpyridine. In the second stage, the kinetic behaviour of this block copolymerization was investigated for two different types of PEO-macroinitiators and catalyst systems, based on CuCl or CuCl2/Cu(0), with tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as the ligand. Various combinations of initiator and catalyst led to a controlled block copolymerization with optimized results obtained for chlorinated poly(ethylene glycol) monomethyl ether as macroinitiator, together with CuCl2/Cu(0)/Me6-TREN as catalyst system. With the latter system, narrow polydispersities (1.25) could be reached for PEO-P4VP block copolymers.  相似文献   

15.
Well‐defined polyacrylonitrile (PAN) of high viscosity‐average molecular weight (Mη = 405,100 g/mol) was successfully synthesized using reversible addition‐fragmentation chain transfer polymerization. The polymerization exhibits controlled characters: molecular weights of the resultant PANs increasing approximately linearly with monomer conversion and keeping narrow molecular weight distributions. The addition of 0.01 equiv (relative to monomer acrylonitrile) of Lewis acid AlCl3 in the polymerization system afforded the obtained PAN with an improved isotacticity (by 8%). In addition, the influence of molecular weights and molecular weight distributions of PANs on the morphology of the electrospun fibers was investigated. The results showed that, under the same conditions of electrospinning, average diameter (247–1094 nm) of fibers increased with molecular weights of PANs, and it was much easier to get “uniform” diameter fibers while using PANs with narrow molecular weight distributions as the precursor of electrospinning. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Liquid crystalline block copolymers (LCBCPs) are fascinating for their combining molecular level liquid crystalline orders and microphase separated multidomain morphologies. Here in this article, a series of PEG‐containing side‐chain discotic LCBCPs of PEG‐bPmn with variant spacer length m = 6, 10 and degree of polymerization (DP) of discotic LC block from n = 10 to 45, have been well‐synthesized via reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. The RAFT process mediated by macromolecular chain transfer agent (macroCTA) shows remarkable monomer concentration dependence. The influence of the introduced PEG block on the nano‐scale microphase‐segregation and mesophase organization is closely related to the side‐chain triphenylene (TP) discogens stacking mode dependent on the spacer length. Wherein, the PEG‐bP6n series with a six‐methylene spacer exhibit consistent microphase separation with slightly disturbed yet ordered columnar structures. While for PEG‐bP10n series with a longer ten‐methylene spacer, the columnar organization in the copolymers is even improved in contrast with the low order of randomly TP stacking in their corresponding homopolymers. This work offers a viable and inspiring pathway for controlled synthesis of block copolymers with bulky side groups, as well as enhances in‐depth understanding of the hierarchical superstructure organization in discotic units involved complex block copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2544–2553  相似文献   

17.
Reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of butyl methacrylate (BMA) and dodecafluoroheptyl methacrylate (DFMA) was carried out with 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as chain transfer agent (CTA). Concentration effects of RAFT agent and initiator on kinetics and molecular weight were investigated. No obvious red oil layer (phase's separation) and coagulation was observed in the first stage of homopolymerization of BMA. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. At 75 °C, the monomer conversion could achieve above 96% in 3 h with [momomer]:[RAFT]:[KPS] = 620:4:1 (mole ratio). The results showed excellent controlled/living polymerization characteristics and a very fast polymerization rate. Furthermore, the synthesis of poly(BMA‐b‐DFMA) diblock copolymers with a regular structure (PDI < 1.30, PMMA calibration) was performed by adding the monomer of DFMA at the end of the RAFT miniemulsion polymerization of BMA. The success of diblock copolymerization was showed by the molecular weight curves shifting toward higher molar mass, recorded by gel permeation chromatography before and after block copolymerization. Compositions of block copolymers were further confirmed by 1H NMR, FTIR, and DSC analysis. The copolymers exhibited a phase‐separated morphology and possessed distinct glass transition temperatures associated with fluoropolymer PDFMA and PBMA domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1585–1594, 2007  相似文献   

18.
Reversible addition fragmentation chain transfer (RAFT) polymerization of cholesteryl acrylate (ChA) was conducted using S-1-dodecyl-S′-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate as CTA and AIBN as initiator in toluene at 80 °C. The polymerization was investigated at two different CTA concentrations (0.025 and 0.040 M). Polymerization of ChA with CTA concentration of 0.040 M proceeds in a controlled/living manner as evidenced by linear increase of the molecular weight with conversion and narrow polymer polydispersity (PDI < 1.2). With lower initial CTA concentration, namely 0.025 M, although poly(cholesteryl acrylate) (PChA) exhibiting narrow molecular weight distributions could be synthesized, the polymerization showed relatively low control with many termination products. Chain extension polymerizations were performed starting from either the PChA or the polystyrene (PS) block, and well-defined copolymers based on ChA and styrene were prepared. Thermal properties of PChA and PS-b-PChA copolymer were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the results showed that both PChA and PS-b-PChA are amorphous polymers. PChA begins to decompose at ca. 218 °C with maximum weight loss rate at 351 °C, while PS-b-PChA shows double weight loss rate peaks located at 345 and 415 °C, respectively.  相似文献   

19.
Macromolecular design by interchange of xanthates/reversible addition fragmentation chain transfer polymerization (MADIX/RAFT) of diallyldimethylammonium chloride (DADMAC) using the hydrophobic O‐ethyl‐S‐(1‐methoxycarbonyl) ethyl dithiocarbonate MADIX/RAFT mediating agent, Rhodixan A1, was investigated. Attempts to obtain an efficient control of DADMAC polymerization in a water/ethanol mixture failed because of significant chain transfer to ethanol. The use of a water‐soluble Rhodixan A1‐terminated acrylamide oligomer as the MADIX/RAFT agent enabled the controlled polymerization of DADMAC in water at 50 °C using the cationic azo initiator V‐50. An excellent agreement was found between experimental and theoretical Mn values throughout polymerization and over a broad range of initial concentration of xanthate. Polydispersity indexes (PDIs) at the end of the polymerization were abnormally high for a process showing a linear increase of Mn with monomer conversion (1.8 < PDI < 2.0). This feature was explained by the measurement of a high transfer constant to xanthate (Cx = 18.8 ± 1.6) but a low interchange transfer constant (Cex = 1.5). Nevertheless, poly(acrylamide)–poly(DADMAC) double hydrophilic block copolymers (DHBCs) of controlled Mn and composition could be successfully synthesized for the first time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
The synthesis of a monoacrylate functionalized poly(isobutylene) (PIB) macromonomer (PIBA) has been achieved by a two‐step reaction starting from a commercially available PIB. Firstly, terminal olefins (vinylidene and trisubstituted olefin) of PIB were transformed to a phenolic residue by Friedel‐Crafts alkylation followed by subsequent esterification of the phenol with acryloyl chloride, catalyzed by triethylamine. PIBA structure was confirmed by 1H‐NMR, 13C‐NMR and GPC before utilizing in the RAFT copolymerization with N,N‐dimethylacrylamide (DMA) to obtain statistical copolymers (P[(DMA‐co‐(PIBA)]). Monomer conversions were consistently higher than 85% for both DMA and PIBA as monomer feed composition was varied. Chain extension of poly(N,N‐dimethylacrylamide) with PIBA to synthesize block copolymers (P[(DMA‐b‐(PIBA)]) was also achieved with near quantitative monomer conversions (>97%). Block formation efficiency was not quantitative but purification of block copolymers was possible by selective precipitation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 634–643  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号