首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As poly(p-dioxanone) (PPDO) with a high molecular weight (viscosity-average molecular weight (Mν) > 100,000 g/mol) is not easy to be obtained in a short time, a new approach has been developed to produce high molecular weight poly(p-dioxanone) (HPPDO-T) by chain-extending reaction of hydroxyl-terminated PPDO (HPPDO) prepolymers using toluene-2,4-diisocyanate (TDI) as chain extender. Here HPPDO prepolymers were synthesized via ring-opening polymerization of p-dioxanone (PDO) monomer initiated by 1,4-butanediol (BD) with Stannous octoate (SnOct2) as catalyst. The resulting polymers, having a highest Mν of 250,000 g/mol, were characterized by 1H NMR, TG, DSC and WXRD. HPPDO prepolymers can react with TDI more effectively than the PPDO prepolymers initiated by mono-functional initiators, and the molecular weights of resulting chain-extended products increase several decade times in an hour comparing to the prepolymers. The chain extended products HPPDO-T have better thermal stability, and higher glass transition temperatures and lower crystallization rates than PPDO homopolymer.  相似文献   

2.
Thermal stability of poly(p-dioxanone) (PPDO) was investigated isothermally and non-isothermally under air atmosphere using thermogravimetry (TG). The addition of 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (PMBP) could enhance successfully the thermal stability of PPDO compared with those of as-prepared and purified PPDO at temperature below about 230 °C. The activation energies for thermal degradation (ΔEtd) were evaluated at different weight loss values from TG data using the procedure recommended by MacCallum et al. The ΔEtd values of as-prepared PPDO, purified PPDO and PPDO containing 1.0 wt% PMBP were in the ranges of 20-50, 35-60, and 56-88 kJ mol−1, respectively, when they were evaluated at weight loss values of 10-80%. The remaining weights increase with the amounts of PMBP added up to 1.5 wt%. The mechanism for the enhanced thermal stability of PPDO was discussed.  相似文献   

3.
A new biodegradable polymer system, poly(p-dioxanone) (PPDO)/poly(ethylene glycol) (PEG) blend was prepared by a solvent casting method using chloroform as a co-solvent. The PPDO/PEG blends have different weight ratios of 95/5, 90/10, 80/20 and 70/30. Crystallization of homopolymers and blends were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). When 5% of PEG was blended, the crystallization exothermal peaks (Tc) of PPDO increased sharply and the crystallization exothermal peaks (Tc) of PEG decreased slightly compared with the homopolymers. The crystallization rates of both components increased, and caused greater relative crystallization degree (Xt%). But when the content of PEG was more than 5%, the crystalline behaviors of blends had no more significant changes accordingly. The melting points of each sample varied little over the entire composition range in this study. The nonisothermal crystallization of PPDO homopolymer and blend (PPDO/PEG = 70/30) were also studied by DSC. The crystallization began at a higher temperature when the cooling rates were slower. The nonisothermal crystallization kinetics of blends was analyzed by Ozawa equation. The results showed that the Ozawa equation failed to describe the whole crystallization of the blend, but Mo equation could depict the nonisothermal crystallization perfectly.  相似文献   

4.
Biodegradable and nontoxic alternating multiblock copolymers based on poly (p-dioxanone) (PPDO) and poly (ethylene glycol) (PEG) were synthesized by the coupling reaction of two bifunctional prepolymers, a dihydroxyl-terminated PPDO and dicarboxylated PEG. The prepolymers and the resulting PPDO/PEG multiblock copolymers were characterized by various analytical techniques such as FT-IR, 1H NMR, GPC, DSC and TG. At high concentration levels above critical gelation concentration (CGC), the aqueous solution of copolymers formed a gel. Temperature-sensitive gel to sol transition behaviors were investigated by the test tube inverting method. Dynamic light scattering (DLS) was used to investigate the micelle of copolymers, whose association probably caused the gelation of the system. Therefore, this novel copolymer has a great potential in injectable drug-delivery system for long-term delivery of drugs.  相似文献   

5.
The kinetics of the thermal degradation and thermal oxidative degradation of poly(p-dioxanone) (PPDO) were investigated by thermogravimetric analysis. Kissinger method, Friedman method, Flynn-Wall-Ozawa method and Coats-Redfern method have been used to determine the activation energies of PPDO degradation. The results showed that the thermal stability of PPDO in pure nitrogen is higher than that in air atmosphere. The analyses of the solid-state processes mechanism of PPDO by Coats-Redfern method and Criado et al. method showed: the thermal degradation process of PPDO goes to a mechanism involving random nucleation with one nucleus on the individual particle (F1 mechanism); otherwise, the thermal oxidative degradation process of PPDO is corresponding to a nucleation and growth mechanism (A2 mechanism).  相似文献   

6.
Poly(p-dioxanone)–poly(ethylene glycol)–poly(p-dioxanone) triblock copolymers (PPDO–PEG–PPDO) were first synthesized by suspension ring-opening polymerization (ROP) of p-dioxanone (PDO) in supercritical carbon dioxide (scCO2) using different molecular weights (2–10 K) of poly(ethylene glycol) (PEG) as macroinitiators. White and fine flow powders were successfully obtained when the molecular weight of PEG was below 6 K and its feed content below 20 wt.%. The 1H nuclear magnetic resonance (NMR) result indicated the formation of PPDO–PEG–PPDO block structure even in a confined polymerized environment of particles. All the powderous samples contained irregular shaped particles that were observed by scanning electron microscope (SEM). Except for the copolymer with 10 wt.% PEG10K feed content, the mean particle sizes of other powderous samples showed identical values close to 15 μm. This fact was in agreement with the crystallinity of PPDO in the copolymers measured by differential scanning calorimetry (DSC). The water absorption of these copolymers was also measured, and as compared with PPDO homopolymer, the introduction of PEG increased the water absorption of the copolymers. The green and environmentally friendly method disclosed in this work is attractive to directly synthesize biodegradable polymeric particles with potential biomedical applications.  相似文献   

7.
Ring-opening suspension polymerization of p-dioxanone(PDO) in supercritical carbon dioxide(scCO2) was investigated in the presence of poly(caprolactone)-perfluropolyether-poly(caprolactone)(PCL-PFPE-PCL).The molecular weight,yield and particle morphology of poly(p-dioxanone)(PPDO) were studied.The stabilizer was effective to stabilize the ring-opening polymerization(ROP) of PDO in scCO2,leading to the formation of resorbable microparticles in a"one pot"procedure.The mean size of PPDO microparticles obtained from suspension polymerizations was sensitive to the rate of agitation and the stabilizer concentration.The method to generate PPDO microparticles has overcome its unprocessable drawback with common organic solvents and provided new product form for biomedical applications.  相似文献   

8.
ABSTRACT

This paper reviews the synthesis, properties, and applications of biodegradable polymer, poly(p-dioxanone) (PPDO), and its copolymers. Recent progress in ring-opening polymerization of p-dioxanone employing several effective catalysts is described. Properties of PPDO are given. The copolymers based on PPDO are also discussed.  相似文献   

9.
The ring opening polymerization (ROP) of p-dioxanone using a protected monosaccharide (1,2;3,4-di-O-isopropylidene-α-d-galactopyranose)/Al(OiPr)3 initiator system to yield polydioxanone with a protected monosaccharide end-group is described. The products were synthesized at 60-100 °C and characterized by 1H and 13C NMR, and MALDI-TOF mass spectrometry. Besides the desired polydioxanone functionalised with a monosaccharide end-group, also polydioxanone with an OiPr end-group was formed (20-30%). Systematic studies showed that the polymer yield is a function of the reaction temperature and the reaction time, with higher temperatures (100 °C) leading to lower yields. The average chain length of the polymers is between 7 and 58 repeating units and may be tuned by the monomer to monosaccharide ratio (at constant Al(OiPr)3 intake). A statistical model has been developed that successfully describes the experimentally observed relation between the average chain length of the functionalized polymer and reaction parameters.  相似文献   

10.
The aim of this work was to investigate the impact of electron beam irradiation at different dose rates on the molecular structure of linear methacrylate-acrylamide copolymer. In the first part, the radiation chemical yields of scission (Gs) and crosslinking (Gx) have been determined after irradiation for various initial molecular weights CL1 (40?000 g/mol), CL2 (90?000 g/mol) and CL3 (425?000 g/mol). Based on this calculation, solvent (ethanol) was found to increase the impact of irradiation especially at low concentration of copolymer. In the second part, the presence of branching in samples before and after e-beam irradiation was explored, and branching calculation was performed.  相似文献   

11.
A series of poly[p-dioxanone-(butylene succinate)] (PPDOBS) copolymers were prepared from p-dioxanone (PDO), 1,4-butanediol and succinate acids through a two-step process including the initial prepolymer preparation of poly(p-dioxanone)diol (PPDO-OH) and poly(butylene succinate)diol (PBS-OH) and the following copolymerization of the two kinds of prepolymers by coupling with hexamethylene diisocyanate (HDI). The molecular structures of the prepared PPDO-OH, PBS-OH and PPDOBS were characterized by hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The crystallization of the copolymers was investigated by using differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). It has been shown that the crystallization rate and the degree of crystallization increases with the increase of the weight fraction of poly(butylene succinate) (PBS) blocks in the copolymers. In phosphate buffer solution with pH 7.4 at 37 °C for 18 weeks, the hydrolytic degradation behaviors of the copolymers were studied. The changes of retention weight, water absorption, pH value, and surface morphologies with the degradation time showed that the hydrolytic degradation rate of PPDOBS could be controlled by adjusting the weight fraction of poly(p-dioxanone) (PPDO) and PBS blocks in the copolymers. The changes of the thermal properties of PPDOBS during the degradation were also investigated by DSC.  相似文献   

12.
Isotactic 6-armed star-shaped poly(vinyl alcohol) (PVA) with a narrow molecular weight distribution was successfully prepared by the living cationic polymerization of 6-armed star-shaped poly(tert-butyl vinyl ether) (PTBVE) and subsequent acidic ether cleavage. The PTBVE was synthesized using hexa(chloromethyl) melamine (HCMM) as a hexafunctional initiator and ZnI2 or ZnCl2 as an activator in toluene/MC (1/1 v/v) at −70 °C. A better living stability of PTBVE was obtained in the ZnCl2 activator system. The number average molecular weight and the polydispersity index of the 6-armed star-shaped PTBVE polymerized with ZnCl2 at −70 °C for 24 h were 156,000 g/mol and 1.47, respectively. The fraction of the mm sequence of the resulting PVA was 52%.  相似文献   

13.
Dynamic NMR of 1,3,5-tris(trifluoromethylsulfonyl)-1,3,5-triazinane reveals two dynamic processes: ring inversion leading to equilibrium between two degenerate rotamers of Cs symmetry (ΔG = 13.5 kcal/mol), and rotation about the S-N bond leading to equilibrium between the Cs (more stable) and C3v (2.12 kcal/mol less stable) rotamers (ΔG = 13.0 kcal/mol).  相似文献   

14.
A new thermometric sensor, which is a transistor (OC71), has been introduced to follow thermometric titrations successfully to clear end points. The sensor was suitable in both normal and differential modes of titration. It is possible to titrate down to 1.32 μmol of HCl and 26.4 μmol of H3BO3in a final 20 ml solution with accuracy and precision of 1%, 2.2% and 1.4%, 2.2%, respectively. The sensor, in association with a pH glass electrode, was used for the determination of pK values of some well established weak acids such as, acetic acid (4.77), phosphoric acid (pK1 = 2.18, pK2 = 7.20 and pK3 = 12.32) as well as for a very weak acid of uncertain pK values H3BO3 (pK1 = 9.20, pK2 = 12.7 and pK3 = 13.80). The sensor was also examined for kinetic catalytic determination of iron(III) in water, milk and pharmaceuticals.  相似文献   

15.
Nonisothermal crystallization and melting behaviors of poly(p-dioxanone)(PPDO)-b-poly(ethylene glycol)(PEG) with mole ratios of 80:20 and 30:70, has been studied by differential scanning calorimeter using various cooling rates. Crystallization behavior of each crystallizable segments of the copolymer was compared with the corresponding segment of homopolymer. For a given composition, the crystallization process began at higher temperature when the slower scanning rates were used. The kinetics of the PPDO segments and the PEG segments in the copolymers under nonisothermal crystallization conditions were analyzed by Ozawa equation and also the crystallization results of the copolymer segments were compared with the corresponding homopolymers. The results showed that the Ozawa equation fails to describe the whole crystallization process of the copolymer segments along with PPDO homopolymer, but describes the crystallization behavior of the PEG homopolymer. Crystallization activation energy and absolute crystallinity values were estimated from the cooling scans (using Kissinger’s method) and fusion endotherms of the subsequent heating scans, respectively.  相似文献   

16.
17.
Poly(p-dioxanone) (PPDO) has been blended with poly(vinyl phenol) (PVPh) and the PPDO/PVPh blends have been investigated using DSC, FTIR and POM. According to the single Tg criterion, miscibility has been found in the whole composition range for the blends obtained by solvent casting from dioxane solutions. The dependence of the Tg on composition shows negative deviation from the Fox equation. The interaction parameter, obtained from melting point depression analysis, χ12 = ?1.0, confirms a thermodynamically miscible blend. Specific interactions have been analyzed by FTIR. The OH stretching region of PVPh indicates that upon addition of PPDO the hydroxyl–hydroxyl autoassociation interactions are mainly replaced by hydroxyl–carbonyl interassociation contacts, in detrimental of the possible hydroxyl–ether interactions. The carbonyl stretching region of pure PPDO is sensitive to intramolecular ether-ester interactions occurring in the oxyethanoate structures (–O–CH2–CO–O–) present along the PPDO chain. The –O–CH2–CO–O– structure presents only two minimum energy conformations, trans and cis, resulting in two different absorptions in the CO stretching region located respectively at about 1757 and 1732 cm?1. Blending with PVPh promotes two new contributions red shifted by about 23 cm?1 relative to the “free” CO components. Finally, POM analysis shows that the addition of PVPh to PPDO significantly decreases the crystallization rate of PPDO.  相似文献   

18.
《中国化学快报》2022,33(4):2151-2154
Herein, we presented a novel biodegradable copolymer via the chain extending reaction of poly(p-dioxanone)-co-poly(2-(2-hydroxyethoxy) benzoate) (PPDO-co-PDHB) prepolymer with hexamethylene diisocyanate (HDI) as a chain extender. The structures and molecular weight of PPDO-co-PDHB prepolymer and PPDO-co-PDHB-PU chain-extended copolymer are characterized via hydrogen nuclear magnetic resonance spectroscopy (1H NMR) and viscosity test. The relationship between the molecular structures and properties of the chain-extended copolymers is established. The PPDO-co-PDHB-PU copolymers possess a better thermal stability comparing with the PPDO homopolymer. The study of mechanical properties shows that the elongation-at-break of PPDO-co-PDHB-PU is much higher than that of PPDO. The investigation of hydrolytic degradation behaviors indicates the degradation rate of PPDO can be controlled by adjusting the PDHB compositions, and proves that chain-extended copolymers exhibit an excellent hydrolytic stability being better than that of PPDO.  相似文献   

19.
Treatment of triethylaluminum with 3,5-diphenylpyrazole in a 2:1 stoichiometry afforded the ethyl-bridged complex Et2Al(μ-Ph2pz)(μ-Et)AlEt2 (79%) as a colorless crystalline solid. Treatment of tri-n-propylaluminum with 3,5-di-tert-butylpyrazole in a 2:1 stoichiometry afforded the n-propyl-bridged complex (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2 (63%) and the dimeric complex [(nPr)2Al(μ-tBu2pz)]2 (3%), respectively, as colorless crystalline solids. Treatment of tri-n-propylaluminum (1 equiv.) or triisobutylaluminum (1 or 2 equiv.) with 3,5-di-tert-butylpyrazole afforded exclusively the dimeric complexes [(nPr)2Al(μ-tBu2pz)]2 (68%) or [(iBu)2Al(μ-tBu2pz)]2 (96%), respectively, as colorless crystalline solids. The solid state structures of Et2Al(μ-Ph2pz)(μ-Et)AlEt2 and (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2 consist of 3,5-disubstituted pyrazolato ligands with a di-n-alkylalumino group bonded to each nitrogen atom. An ethyl or n-propyl group acts as a bridge between the two aluminum atoms. The kinetics of the bridge-terminal exchange was determined for the bridging n-alkyl complexes by 13C NMR spectroscopy, and afforded ΔH = 1.5 ± 0.1 kcal/mol, ΔS = −46.8 ± 39.0 cal/K mol, and for Et2Al(μ-Ph2pz)(μ-Et)AlEt2 and ΔH = 1.7 ± 0.1 kcal/mol, ΔS = −46.6 ± 43.4 cal/K mol, and for (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2. The negative values of ΔS imply ordered transition states relative to the ground states, and rotation along the N-AlR3 vector without aluminum-nitrogen bond cleavage is proposed.  相似文献   

20.
We report here the polymerization of N-isopropyl acrylamide (NIPAM) via the reversible addition fragmentation chain transfer (RAFT) process. Two trithiocarbonates (S,S′-bis(α,α′-dimethyl-α″-acetic acid)-trithiocarbonate and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid) were used as the chain transfer agents in conjunction with 4,4′-azobis(4-cyanovaleric acid) and 2,2′azobis(2-methylpropionamidine) dihydrochloride as the initiating species. Poly(NIPAM) is a thermo-responsive polymer that has a sharp lower critical solution temperature (LCST). Herein, we investigated the aqueous solution behaviour of well defined p(NIPAM) prepared by the RAFT process as a function of molecular weight (degree of polymerization: 50, 100 and 200) and temperature. Furthermore, we examine the influence of varying concentrations of macromolecular species (neutral polyethylene glycol (Mn - 3400 g/mol) and ionic bovine serum albumin (Mn - 63 000 g/mol)) on the LCST of p(NIPAM). The aqueous solution behaviour was assessed by spectrophotometry, dynamic light scattering and surface tensiometry. The macromolecular additives was found to have a significant effect on the coil to globular transition of the lower molecular weight p(NIPAM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号