首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scattered electron paramagnetic resonance (EPR) spectroscopic data for binary sulfur-nitrogen (S,N) radicals have been compiled and critically assessed.Many of these are inorganic rings or cages.For each species, possible equilibrium structures in the gas phase and the EPR hyperfine coupling (hfc) constants have been calculated with DFT using the B3LYP functional and basis sets of triple-ζ (or better) quality.Good agreement is obtained between calculated and measured values for the well characterized [S3N2]+, a planar π-radical for which the s-component of the orbitals is likely to be reasonably independent of minor geometrical changes between gas-phase and condensed-phase states.The cage compounds [S4N4] and [S4N5]−2, for which reliable experimental EPR spectra have been reported, show larger variation between calculated and measured hfc, as a consequence of the dependence of the s orbital content of the molecular orbitals on small structural changes.The very large disagreements between the DFT calculated and experimentally claimed hfc constants for [NS], [SNS] and [S4N4]−3 in condensed phases lead us to question their assignment.Among binary S,N radicals, 33S hfc data has only been reported for [S3N2]+ (through isotopic enrichment).These values were essential for the correct identification of the EPR spectra of this important radical, which previously was misassigned to other species.Our results suggest that 33S data will be equally important for the correct identification of the EPR spectra of other binary S,N species, many of which are cyclic systems, e.g.[S3N3], [S4N3] and[S4N5].  相似文献   

2.
The push-pull character of two series of donor-acceptor azines has been quantified by 13C, 15N chemical shift differences of the partial C(1)N(1) and N(2)C(2) double bonds in the central linking C(1)N(1)-N(2)C(2) unit and by the quotient of the occupations of the bonding π and anti-bonding π orbitals of these bonds. Excellent correlation of the latter push-pull parameter with the corresponding bond lengths dCN strongly recommend both the occupation quotients π/π and the corresponding bond lengths as reasonable sensors for quantifying the push, pull character along the CN-NC linking unit, for the donor-acceptor quality of the two series of azines and for the molecular hyperpolarizability ß0 of these compounds. Within this context, reasonable conclusions concerning the interplay of steric hindrance in the chromophore, push-pull character and hyperpolarizability of the azines and their application as NLO materials will be drawn.  相似文献   

3.
Trans-di(ortho-tolylethynyl)bis(dimethylphenylphosphine)palladium(II) reacts above −20 °C with the iodonium reagent IPhCl2 to give predominantly o-Tol-CC-Cl, above 15 °C with IPh2(OTf) (OTf = triflate) to give o-Tol-CC-Ph and (o-Tol-CC)2 in ca. 3:1 ratio, and above 10 °C with IPh(CCR)(OTf) (R = But, SiMe3) to give predominantly o-Tol-CC-CC-R and (o-Tol-CC)2. 31P NMR spectra provide evidence for detection of intermediates. The complexes trans-[Pd(CC-o-Tol)2(PMe2Ph)2] and trans-[PdCl(CC-o-Tol)(PMe2Ph)2] are obtained on reaction of trans-[PdCl2(PMe2Ph)2] with Li(CC-o-Tol) and o-Tol-CCH/Et3N, respectively, and have been characterised by X-ray crystallography.  相似文献   

4.
Substituent effects on the energies of electronic transitions (ETs) between the triplet excited and ground states of gem-diphenyltrimethylenemethane biradicals (32a) were explored by using thermoluminescence (TL) spectroscopy and density functional theory (DFT) including time-dependent (TD) DFT. Linear free energy (Hammett) analyses of TL energies of a variety of para-substituted aryl derivatives of 32* gave reasonable correlations with the substituent constant, σ. The slope of Hammett plots of the data are nearly identical to one obtained from a similar analysis of the photoluminescence (PL) energies of the structurally-related 1,1-diarylethyl radicals (3*). The results suggest that TL of 32* and PL of 3* derive from a common diarylmethyl radical fluorophore. This interpretation is also supported by the DFT and TDDFT calculated electronic structures and ET energies of 32 and 3. Thermodynamic and kinetic analyses of the charge recombination (CR) process between 2+ and 1, which generates 32*, revealed that substituents not only alter the TL energies but also the TL intensities of 32*. The observations made in this effort demonstrate that 32* as well as 32 and 2+ have greatly twisted molecular geometries and highly localized electronic structures.  相似文献   

5.
6.
In contrast to the usual formal [2+2]-cycloaddition reaction, (NC)2CC{CC(SiPri3)}2, containing bulky alkynyl substituents, reacts with Ru(CCPh)(PPh3)2Cp to give the unprecedented cyclobutenylidene complex Ru{C(CN)2C[CC(SiPri3)]CC(SiPri3)CPhC}(PPh3)Cp, formed by addition of one of the CC(SiPri3) groups to the Ru-CCPh moiety and subsequent electronic reorganisation.  相似文献   

7.
Reactions of N-(2,4-dinitrophenyl)-4-arylpyridinium chlorides (aryl (Ar) = phenyl and 4-pyridyl) with piperazines caused the ring opening of the pyridinium ring and yielded polymers that consisted of 5-piperazinium-3-aryl-penta-2,4-dienylideneammonium chloride units [N(CH(R)CH2)2N+(Cl)CHCHC(Ar)CHCH, RH, Me, and phenyl]. However, the same reactions occurring in the presence of piperidine yielded oligomers that consisted of 5-piperazinium-3-aryl-penta-2,4-dienylideneammonium chloride units having piperidine and/or piperazine rings at both ends. 1H NMR spectra suggested that π-electrons of the penta-2,4-dienylideneammonium group of the polymers and the oligomers were delocalized. UV-vis measurements revealed that the π-conjugation system expanded along the polymer and oligomer chains due to the orbital interaction between electrons on the two nitrogen atoms of the piperazinium ring. Conversion of the piperazinium ring from the boat form to the chair form caused decrease in the π-conjugation length. The rate constants of the conversion of the oligomers depended on their chain lengths. The surface of pellets that were molded from the polymers and oligomers exhibited metallic luster. These polymers and oligomers underwent electrochemical oxidation in solution.  相似文献   

8.
Reaction of cis-[RuCl2(dppm)2] (dppm = 1,2-bis(diphenylphosphino)methane) with PhCCH and NaPF6 utilising methanol as solvent results in the formation of the η3-butenynyl complex [Ru(η3-PhCCCCHPh)(dppm)2][PF6] in good yield. Similar reactions with ButCCH and PrnCCH resulted in the corresponding alkyl-substituted complexes and all three of these compounds have been characterised by NMR spectroscopy and X-ray crystallography. The mechanism of this reaction has been probed by employing labelling experiments with both PhCCD and PhC13CH allowing the identity of possible intermediates in the reaction to be determined. Furthermore, [Ru(η3-PhCCCCHPh)(dppm)2][PF6] has been shown to be an effective regio- and stereo-selective catalyst for the dimerisation of PhCCH to Z-PhCCCHCHPh in the absence of solvent. In contrast, no evidence for the formation of alkyne coupling was obtained from the reaction of cis-[RuCl2(dppe)2] (dppe = 1,2-bis(diphenylphosphino)ethane) with PhCCH and NaPF6.  相似文献   

9.
10.
Copper-catalyzed reaction of [Cp(PPh3)NiCl] with the terminal alkynes H-CC-C(O)R (R = O-Menthyl, NMe2, Ph) yields the alkynyl complexes [Cp(PPh3)Ni-CC-C(O)R]. Subsequent O-methylation with either [Me3O]BF4 or MeSO3CF3 affords cationic allenylidene complexes, [Cp(PPh3)NiCCC(OMe)R]+X¯ (X = BF4, SO3CF3). N-Alkylation of Cp(PPh3)Ni-pyridylethynyl complexes likewise gives cationic allenylidene complexes. [Cp(PPh3)Ni-CC-C(CH)4N] adds BF3 at nitrogen. Modification of the ligand sphere in these nickel allenylidene complexes is possible by replacing PPh3 by PMe3 in the alkynyl complex precursors. The first allenylidene(carbene)nickel cation, [Cp(SIMes)NCCC(OMe)NMe2]+, is accessible by successive reaction of [Cp(SIMes)NiCl] with H-CC-C(O)NMe2 and [Me3O]BF4. By the analogous sequence an allenylidene complex containing the chelating (diphenylphosphanyl)ethylcyclopentadienyl ligand can be prepared. DFT Calculations were carried out on the allenylidene complex cation [Cp(PPh3)NiCCC(OMe)NMe2]+ and on its precursor, the alkynyl complex [Cp(PPh3)Ni-CC-C(O)NMe2]. Based on the spectroscopic data and a X-ray structure analysis the bonding in the new nickel allenylidene complexes is best represented by several resonance forms, an alkynyl resonance form considerably contributing to the overall bond.  相似文献   

11.
The push,pull effect in two series of disubstituted alkynes was studied at the DFT level [B3LYP/6-311G(d)] by application of the 13C chemical shift differences (GIAO) between the alkyne carbon atoms (ΔδCC), the charge difference between these carbons (ΔqCC), the occupation quotient (NBO) of anti-bonding π, and bonding π orbitals (πCCCC) and the bond length (dCC) of the CC triple bond. The linear dependence of dCC versus πCCCC quantifies changes in the push,pull effect while deviations from the latter correlation indicate and ascertain quantitatively to what extent steric hindrance restricts the strain-less conjugation of the CC triple bond π-orbitals in the disubstituted alkynes.  相似文献   

12.
The addition of phosphines to the manganese allenylidene complexes Cp(CO)2MnCCC(Ph)R (R = H, Ph) proceeds selectively at the Cα atom to result in the α-phosphonioallenyl complexes Cp(CO)2Mn-C(+PR31)CC(Ph)R. The protonation of the latter affords the η2-(1,2)-phosphonioallenes Cp(CO)2Mn{η2-(1,2)-HC(+PR31)CC(Ph)R}, rather than the phosphoniovinylcarbenes Cp(CO)2MnC(+PR31)-HCC(Ph)R. All complexes obtained are stereochemically rigid and do not isomerize into the η2-(2,3)-phosphonioallene isomers.  相似文献   

13.
The first luminescent rhenium(I)-gold(I) hetero organometallics, Re{phenAu(PPh3)}(CO)3Cl (3) and Re{(PPh3)AuphenAu(PPh3)}(CO)3Cl (4), have been prepared using the gold(I) complex AuCl(PPh3) (PPh3 = triphenylphosphine) and the novel rhenium(I) complexes Re(phenH)(CO)3Cl (5) (phenH = 3-ethynyl-1,10-phenanthroline) or Re(HphenH)(CO)3Cl (6) (HphenH = 3,8-bis(ethynyl)-1,10-phenanthroline). All the present rhenium(I) complexes 3-6 were revealed to possess a facial configuration (fac-isomer) with respect to the three carbonyl ligands. The main frameworks for these new gold(I) organometallics were constructed by the Au-C σ-bonding (with the η1-type coordination) between the ethynylphenanthrolines and the Au(I) phosphine unit. Re(I)-Au(I) heterometallics 3 and 4 have shown single phosphorescence from the 3MLCT excited state and this observation can be interpreted in terms of the efficient intramolecular energy transfer from the Au(I) unit to the Re(I) unit.  相似文献   

14.
The push-pull characters of a large series of donor-acceptor substituted azo dyes—71 structures in all—have been quantified by the NN double bond lengths, dNN, the 15N NMR chemical shift differences, Δδ15N, of the two nitrogen atoms and the quotient, π/π, of the occupations of the antibonding π, and bonding π orbitals of this partial NN double bond. The excellent correlation of the occupation quotients with the bond lengths strongly infers that both π/π and dNN are excellent parameters for quantifying charge alternation in the push-pull chromophore and the molecular hyperpolarizability, β0, of these compounds. By this approach, selected compounds can be appropriately considered as viable candidates for nonlinear optical (NLO) applications.  相似文献   

15.
Reaction of HCCUr (Ur = uracil) with [RhCl(PiPr3)2] results in the formation of the vinylidene complex [RhCl(PiPr3)2(CC{H}Ur)]. In the solid state this complex forms a hydrogen bonded network which consists of complementary interactions between uracil groups on neighbouring rhodium complexes and with the methanol of crystallisation. The η2-alkyne complexes [RhCl(PiPr3)22-PhCCUr)] and [Rh(η5-C5H5)(PiPr3)(η2-PhCCUr)] have also been prepared. In contrast to the behaviour of [Rh(η5-C5H5)(PiPr3)(η2-PhCCUr)], [RhCl(PiPr3)22-PhCCUr)] shows little evidence for the formation of hydrogen bonded aggregates in solution. The difference in behaviour between the two species is rationalised on the basis of steric effects.  相似文献   

16.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

17.
The effects of the carbon backbone chain length on the EPR spectra of linear perfluoro-n-alkanes (PFAs) γ-irradiated at 77 K was studied for the short chain n-C6F14, n-C8F16, n-C12F26, and n-C16F34 molecules as well as the polymer polytetrafluoroethylene (PTFE). The experimental data show that the processes occurring during radiolysis of perfluoro-n-alkanes and polytetrafluoroethylene are very similar. EPR spectra of irradiated perfluoro-n-alkanes at low radiation dose show superimposed signals from three radicals: -F2CCFCF2-, -CF2CF2 and F3C. The signal intensity decreases with perfluoro-n-alkanes chain length. At doses above 2.0 MGy, a constant increase in concentration of the radicals -F2CCFCF2- and -CF2CF2 is observed with decreasing chain length. The concentration of these radicals formed during radiolysis of PFA is described by the ratio: [-CF2CF2]/[-F2CCFCF2-] ≈3/(n − 2), where n is the number of carbon atoms in the linear perfluoroalkanes. Density functional theory was used to calculate the structures of the radicals and C-F bond energies in model perfluoro-n-alkanes as well as the EPR spectra of the associated radicals. This data is used to provide further insight into the radiation stability of PTFE. Four topographical structures of polytetrafluoroethylene, one amorphous and three crystalline, were identified by thermomechanical analysis. In the crystal phase, γ-irradiation results in their transformation to the amorphous form. The helical structure of individual perfluroalkanes readily distorts on removal of a fluorine and this will have an impact on the overall structure of the material. Such structural reorganization can lead to loss of the mechanical stability of polytetrafluoroethylene.  相似文献   

18.
19.
Azine ligands derived from hydrazine and benzaldehyde derivatives bearing halogen substituents in ortho-position with respect to the carbonyl function upon treatment with Fe2(CO)9 show two typical reaction principles. One is the symmetrical cleavage of the N-N bond of the azine to yield either di- or trinuclear iron carbonyl compounds [Fe2(CO)62-NCHR)2] and [Fe3(CO)92-NCHR)(μ22-NCHR)] each showing two arylidenimido moieties. In addition, a trinuclear iron carbonyl cluster compound exhibiting a tetrahedral Fe3N cluster core is isolated. The cluster shows only one half of the former azine ligand. It is a ionic compound of the general formula [Fe3(CO)932-NCHR)]Na × H2O. This trinuclear cluster compound is quantitatively converted into [Fe3(CO)92-H)(μ32-NCHR)] upon treatment with phosphorous acid. Most interestingly, we were also able to isolate two types of compounds in which an activation of one of the carbon halogen bonds in ortho-position with respect to the imine functions of the azine has occured in terms of an ortho-metallation reaction. In the N-N bond of the azine is still preserved, whereas in [Fe3(CO)933-NCHR)] again only one half of the former azine ligand is coordinated in an arylidenimido fashion. In both types of compounds one additional iron carbon bond is present due to the activation of an aromatic carbon halogen bond. The reaction of iron carbonyls with 2,6-difluorobenzonitrile produces [Fe3(CO)932-NCR)] as the sole product. All new iron carbonyl compounds are characterized by means of X-ray crystallography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号