首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous poly(ethylene terephthalate) was annealed at temperatures around the glass transition temperature and then heated up in differential scanning calorimeter at 20 °C min−1. It was found that the annealing favored the subsequent cold crystallization and this effect became stronger with increasing annealing temperature. The experimental results were explained by considering the structural change during the annealing.  相似文献   

2.
The effect of a small amount of poly(ethylene naphthalate) (PEN) in its blends with poly(trimethylene terephthalate) (PTT) on isothermal melt-crystallization kinetics and spherulitic morphology of the blends was thoroughly investigated. The maximum PEN content in the blends was 9 wt%. Due to the single composition-dependent glass transition temperature (Tg) that was observed for each blend, these blends appeared to be miscible in the amorphous state. After isothermal crystallization from the melt state, the neat PTT and its blends with PEN exhibited either double or triple melting endotherms. The triple endothermic peaks were observed in both the neat PTT and the blends when being crystallized at crystallization temperatures (Tc) of less than or equal to 195 °C. The equilibrium melting temperature () for the neat PTT was determined based on the linear Hoffman–Weeks extrapolative method to be 248 °C. Such values for the blends were found to decrease with the addition and increasing amount of PEN. Both the neat PTT and the blends were isothermally crystallized over the Tc range of 190–205 °C. At a given Tc, the 97PTT/3PEN blend exhibited a half-time of crystallization (t0.5) value that was lower, while it exhibited reciprocal half-time (), Avrami rate constant (KA), and spherulitic growth rate (G) values that were greater, than those of the neat PTT. With further increase in the PEN content, the t0.5 value increased, while the , KA, and G values decreased. Analysis of the G values based on the Lauritzen–Hoffman's (LH) secondary nucleation theory showed that the neat PTT and the 91PTT/9PEN blend exhibited a regime II→III transition at 194 °C (467.2 K), while no regime transition was observed for the other two blends. The lateral and the fold surface free energies (σ and σe) and the work of chain folding (q) for the neat PTT and the blends were 19.4, 30.2–46.3 erg cm−2, and 2.4–3.6 kcal mol−1, respectively. Lastly, the effect of both the Tc and the PEN content on morphology and texture of the PTT spherulites was also investigated and the results showed that the texture of the spherulites became coarser with increasing Tc and PEN content.  相似文献   

3.
The crystallization of poly(ethylene terephthalate) under uniaxial tensile strain at different extension rates was investigated with optical polarimetry in a temperature range between the glass-transition temperature and the quiescent crystallization temperature. The evolution of the optical properties of the polymer, including the turbidity, birefringence, and dichroism, were monitored simultaneously with the mechanical parameters. To complete the semicrystalline microstructure characterization of the polymer under strain, an online wide-angle X-ray diffraction (WAXD) technique was used in separate experiments, which were performed under the same thermomechanical conditions. For real-time measurements, a high-energy synchrotron radiation source was used. The optical properties provided information about both the crystalline and amorphous phases, whereas the WAXD patterns essentially gave information about the crystalline phase. The two experimental techniques were then used in a complementary way to characterize the semicrystalline microstructure. Significant deviations from the stress-optical rule were found. This was attributed to both transient effects and the appearance of crystallites, which consisted of highly oriented molecular segments that could contribute to the optical anisotropy but not necessarily to the stress. The behavior of the optical dichroism was found to be qualitatively different from that of the birefringence. The latter monotonically increased with the strain, whereas the former first increased with the strain, passed through a maximum, and then decreased to a steady-state value. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1915–1927, 2004  相似文献   

4.
Poly(trimethylene terephthalate)(PTT) is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR) analysis,differential scanning calorimetry(DSC) and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTTwithintrinsicviscosity(Ⅳ) of 0.74 dL/g has a maximum crystallinity...  相似文献   

5.
The effect of annealing on the morphology and subsequent crystallization kinetics of poly (ethylene terephthalate)/polycarbonate blends have been investigated using differential scanning calorimetry (DSC), polarized light microscopy, and scanning electron microscopy (SEM). During annealing transesterification and phase coarsening occurred, and the final properties were compromizes between these two competing effects. Initially, the effect of phase separation dominated and the rate of cold crystallization of PET increased. Transesterification, however, became increasingly important and the rate of crystallization decreased progressively until finally the blend completely lost the ability to crystallize. At this stage in the reaction a single glass transition was observed and uniform glassy material observed in the SEM. The maximum crystallinity of the blend achieved on heating showed the same trend in first increasing and then decreasing with annealing time. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2129–2136, 2004  相似文献   

6.
The simultaneous SAXS/WAXD technique is shown to provide an unambiguous method for following structural changes taking place during the programmed heating of a range of multiphase polymeric materials. Results are given for polyethylene, block copolyurethanes and block copolyesters containing liquid crystalline hard segments. UK Thermal methods Group Award Lecture  相似文献   

7.
Poly(trimethylene terephthalate) (PTT)/poly(ethylene naphthalate) (PEN) blends were miscible in the amorphous state in all of the blend compositions studied, as evidenced by a single, composition-dependent glass transition temperature (Tg) observed for each blend composition. The variation in the Tg value with the blend composition was well predicted by the Gordon-Taylor equation, with the fitting parameter being 0.57. The cold-crystallization peak temperature decreased with increasing PTT content, while the melt-crystallization peak temperature decreased with increasing amount of the minor component. The subsequent melting behavior after both cold- and melt-crystallization exhibited melting point depression, in which the observed melting temperatures decreased with increasing amount of the minor component. During melt-crystallization, both components in the blends crystallized concurrently just to form their own crystals. The blend with 60% w/w of PTT exhibited the lowest total apparent degree of crystallinity.  相似文献   

8.
The glass-transition temperature and non-isothermal crystallization of poly(trimethylene terephthalate)/poly(ethylene 2,6-naphthalate) (PTT/PEN) blends were investigated by using differential scanning calorimeter (DSC). The results suggested that the binary blends showed different crystallization and melting behaviors due to their different component of PTT and PEN. All of the samples exhibited a single glass-transition temperature, indicating that the component PTT and PEN were miscible in amorphous phase. The value of Tg predicted well by Gordon-Taylor equation decreased gradually with increasing of PTT content. The commonly used Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of non-isothermal crystallization. The kinetic parameters suggested that the PTT content improved the crystallization of PEN in the binary blend. The crystallization growth dimension, crystallization rate and the degree of crystallinity of the blends were increased with the increasing content of PTT. The effective activation energy calculated by the advanced iso-conversional method developed by Vyazovkin also concluded that the value of Ea depended not only on the system but also on temperature, that is, the binary blend with more PTT component had higher crystallization ability and the crystallization ability is increased with increasing temperature. The kinetic parameters U* and Kg were also determined, respectively, by the Hoffman-Lauritzen theory.  相似文献   

9.
The crystallization of poly(ethylene terephthalate) (PET) was studied in the presence of nucleating agents and promoters. The effect of both by themselves and in concert was investigated using differential scanning calorimetry. The aim of this work is to find conditions of fast crystallization of PET. Sodium benzoate(SB) and Surlyn® (S) substantially increase the crystallization rate of PET at higher temperature owing to a reduction in the energy barrier towards primary nucleation, but they accelerate crystallization even more at lower temperature with an additional improvement of the molecular mobility of PET chains. Chain scission of PET caused by the reaction with the nucleating agents was proven by determination of molecular weight. The addition of S alone led to a lower reduction in molecular weight. A series of N-alkyl-p-toluenesulfonamides (ATSAs) were shown to effectively promote molecular motion of the PET chains, leading to an increase in crsytallization rate at lower temperature. A remarkable acceleration of crystallization of PET was attained at lower temperature when S and ATSA were added together. When the content of ATSA is low, S has the dominant influence due to its dual effect of decreasing energy barrier towards nucleation and promoting molecular motion of PET chains. A further increase of crystallization rate of PET was found only after an addition of ATSA of above 5 wt.%.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayThis work was supported by State Science and Technology Commission, and partially by National Science Foundation.  相似文献   

10.
 Supercritical CO2 fluid, a new environmentally friendly dyeing medium, changes the fiber structure to a certain extent in dependence on the treatment temperature and pressure used. Therefore the changes of crystalline structure in poly(ethylene tereph-thalate) (PET) fibers as brought about under the influence of supercritical CO2 fluid were investigated. For the data collection of wide-angle X-ray diffraction full patterns a two-circle goniometer, equipped with a position sensitive detector, was used. From the observed two-dimensional fiber diffraction patterns the crystallinities of various treated fibers were evaluated. The equatorial scanning yielded the dimensions of crystallites. To elucidate the fiber-surface morphology changes SEM analyses were performed. The supercritical fluid dyeing of PET fibers with highly developed microfibrillar structure under taut-ends conditions promotes changes which are characterized by an increase in crystallinity and by diminution of the apparent crystallite dimensions. Some changes of surface morphology of dyed fibers were observed as well. Received: 14 May 1997 Accepted: 23 September 1997  相似文献   

11.
Structural changes occurring during crystallization of quenched amorphous poly(ethylene terephthalate) (PET) and subsequent cooling/heating cycles have been studied by real-time small-angle x-ray scattering (SAXS), using synchrotron radiation. Initial crystallization is found to occur by insertion of new lamellae between the existing ones, while rapid continuous melting/recrystallization happens when the cold-crystallized PET samples are heated above the previous highest annealing temperature. Such melting/recrystalization results in irreversible increases in the lamellar long period, the crystal thickness and the density difference between the crystalline and amorphous regions; in contrast, at temperatures below the prior highest crystallization temperature, the structural changes are dominated by reversible effects such as thermal expansion. However, throughout the entire temperature range up to the melting point around 250 °C, the crystal core thickness remains quite small, less than ca. 50 Å, and the linear crystallinity of lamellar stacks remains nearly constant around 0.3. Such a low crystallinity indicates the presence of thick order-disorder interfacial layers on the lamellar surface, whose thickness increases with temperature.Dedicated to Prof. E. W. Fischer on the occasion of his 65th birthday.  相似文献   

12.
Poly(butylene terephthalate) (PBT) was blended with nanoscale fully vulcanized acrylic rubber (FVAR) powders in a twin extruder, and the FVAR powders were dispersed well in PBT from scanning electron microscopy (SEM) and transmission electron microscope (TEM) investigation. The isothermal crystallization kinetics of PBT/FVAR blends were investigated by differential scanning calorimeter (DSC) and simulated by Avrami model. Equilibrium melting temperature was estimated by the nonlinear Hoffman-Weeks relation. The active energy (ΔE) and nucleation parameters (Kg) increased with the addition of FVAR, suggesting that FVAR particles hindered the crystallization; however more content FVAR had a lower ΔE and Kg because FVAR powders acted as heterogeneous nuclei in the nucleation of crystallization and facilitated the crystallization of PBT. The crystallization ability followed the order: PBT > PBT/FVAR6 > PBT/FVAR3 > PBT/FVAR1 when undercooling was considered.  相似文献   

13.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

14.
Colour formation in poly(ethylene terephthalate) during melt processing   总被引:1,自引:0,他引:1  
The discolouration, that occurs in virgin poly(ethylene terephthalate) - PET during melt processing, was studied using various bulk and surface analytical techniques. Proton nuclear magnetic resonance (1H NMR) was used to study the bulk chemical changes occurring in the polymer during thermo-oxidative degradation. Chemical derivatisation with trifluoroacetic anhydride (TFAA) was used to label the hydroxyl groups introduced on the polymer surface by thermal oxidation.From the surface analysis studies using photoacoustic Fourier transform infrared spectroscopy (PA/FT-IR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and X-ray photoelectron spectroscopy (XPS) it was evident that colour formation starts initially with the hydroxylation of the terephthalic ring. Further, the formation of additional carbonyl functionalities and conjugated chromophoric systems complete the colour formation process.  相似文献   

15.
The crystallization behavior of poly(ethylene terephthalate) (PET) with disodium terephthalate (DST) as nucleating agent was investigated. A detailed analysis of the crystallization course from the melt was made with the Avrami expression. The results demonstrated that DST additive can promote the PET crystallization rate in its entire crystallizable temperature range, and the acceleration degree of DST decreases with increasing temperature after a temperature higher than 180 °C. The values of the Avrami exponent indicated that the crystallization mode in Avrami theory is not suitable for the crystallization of these polymers, and the mechanism of the heterogeneous nucleation on PET crystallization is discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2135–2144, 2003  相似文献   

16.
The conditions of synthesis of statistical poly(ethylene succinate-co-terephthalate) copolymers (2GTS) and high molecular weight poly(ethylene succinate) (PES) with good hydrolytic and optical parameters, designed for the production of biodegradable products and resins, are presented in this article. Copolymers were prepared by melt polycondensation of bis-(β-hydroxyethylene terephthalate) (BHET) and succinic acid (SA) with excess of ethylene glycol (2G) in the presence of a novel titanium/silicate catalyst (C-94) and catalytic grade of germanium dioxide (GeO2) as cocatalyst. The chemical structure and physical properties of those materials were characterized by 1H NMR, FT-IR, dynamical-mechanical thermal analyses (DMTA), differential scanning calorimetry (DSC), solution viscosity and spectroscopic methods. The hydrolytic degradation was performed in a water solution with variable pH, also in garden soil and in compost. The highest hydrolytic degradation rate was observed for pH 4 and for compost. Better hydrolytic degradation values in compost medium were observed for copolyester prepared in the presence of GeO2 as polycondensation cocatalyst. The copolyester with 40 mol% of aliphatic units was chosen for industrial syntheses which were performed in ELANA and subsequently the processing parameters and compatibility with potato starch of this polyester were checked by BIOP Biopolymer Technologies AG.  相似文献   

17.
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films.  相似文献   

18.
Poly(ethylene terephthalate) (PET) from an industrial manufacturer was depolymerized by ethylene glycol in the presence of a novel catalyst: ionic liquids. It was found that the purification process of the products in the glycolysis catalyzed by ionic liquids was simpler than that catalyzed by traditional compounds, such as metal acetate. Qualitative analysis showed that the main product in the glycolysis process was the bis(hydroxyethyl) terephthalate (BHET) monomer. Thermal analysis of the glycolysis products was carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and water content in the catalyst on the conversion of PET, selectivity of BHET, and distribution of the products were investigated. Results show that reaction temperature is a critical factor in this process. In addition, a detailed reaction mechanism of the glycolysis of PET was proposed.  相似文献   

19.
Crystallization behavior of poly(ethylene terephthalate) (PET)/clay nanocomposites has been investigated in terms of differential scanning calorimeter (DSC) analysis, polarizing optical microscopy (POM), and scanning electron microscopy (SEM) observation. The nanocomposites for investigation were prepared via in situ polycondensation. Crystalline morphologies were observed through POM and SEM. The nonisothermal and isothermal crystallization rates of different samples were determined for comparison based on DSC data. Secondary nucleation analysis was also performed based on bulk crystallization data derived from DSC analysis. The results revealed that nucleating abilities of montmorillonites (MMT) depended on the dispersion state of clay in matrix, the surface modification status, and the metallic derivatives released from MMT during in situ synthesis. The quantities of metallic elements released were measured by inductively coupled plasma (ICP) analysis. The results showed that the release of these metallic derivatives was also affected by surfactant molecules anchored on the surface of MMT. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2380–2394, 2008  相似文献   

20.
Using FTIR spectroscopy we have examined conformational changes in the quenched and slowly cooled amorphous PET films during physical aging process. It was observed that the amount of trans conformers for quenched sample decreased upon sub-Tg annealing. For the slowly cooled sample that corresponds to a state closer to equilibrium, the amount of trans conformers hardly decreased, but increased gradually during sub-Tg annealing process. The conformational populations of these two samples tend to be identical with annealing time. These results demonstrate that sub-Tg annealing will lead to closer interchain packing and result in the formation of new cohesional entanglements along the chains. In situ FTIR studies on the conformational changes of these samples were also carried out during heating up of the sample through the glass transition region. The results showed that incremental changes of the amount of trans conformers in Samples Q and SC were gradual, while an abrupt change of trans conformers occurred in the sub-Tg annealed samples. These results were in agreement with the formation of the interchain cohesional entanglement due to sub-Tg annealing. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 783–788, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号