首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary: Butyl acrylate/acrylic acid/2-hydroxyl methacrylate (BA/AA/HEMA, weight ratio: 96/2/2) latexes were produced via starved seeded semi-batch emulsion polymerization. The microstructure of the latex polymers was controlled by varying the amount of chain transfer agent (1-dodecanethiol). The latexes were characterized for gel content, Mc (molecular weight between two adjacent cross-linking points), Mw (molecular weight of sol polymers) and Me (molecular weight between entanglements). From these latexes, PSA films were cast, dried, conditioned and then thermally post-treated at 120 °C to react the carboxyl and hydroxyl groups from the AA and HEMA units. Tack, peel strength and shear strength of the PSA films were then measured. The thermal post-treatment was shown to be an effective way to improve latex-based PSA performance. The effectiveness of the post-treatment was observed to depend on the polymer microstructure (Mc relative to Me relative to Mw) of the untreated latex-based PSAs and on the gel content.  相似文献   

2.
To overcome the environmental concerns associated with long-chain perfluorinated compounds, in this report, non-bioaccumulative, environmentally friendly stabilizer architectures based on short-chain fluorinated polymers have been designed for the dispersion polymerization of methyl methacrylate (MMA) in supercritical CO2. Random copolymers composed of 2-(diisopropylamino)ethyl methacrylate (DPAEMA) and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate (FBMA) or 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate were prepared with various comonomer ratios and utilized as stabilizers. It was found that the copolymers effectively stabilized PMMA latexes in CO2, leading to the formation of free-flowing, spherical PMMA particles. With increase in the concentration of the stabilizer poly(FBMA-co-DPAEMA) from 2% to 6% (w/w with respected to MMA), the particles diameter decreased from 3.02 to 1.0 μm.  相似文献   

3.
The poly(methyl methacrylate/butyl acrylate/acrylic acid) [P(MMA/BA/AA)] and poly (styrene/butyl acrylate/acrylic acid) [P(St/BA/AA)] latexes were synthesized using the emulsifier octylphenol polyoxyethylene(10) ether (OP-10) and ammonium sulfate allyloxy nonylphenoxy poly(ethyleneoxy)(10) ether(DNS-86). The optimum amount of OP-10 and DNS-86 was 1.5% and 2.5% respectively. The P(MMA/BA/AA) and P(St/BA/AA) latex containing 1.5% OP-10 or 2.5% DNS-86 were blended pairwise. The performances of latex blends and parent latexes as a function of emulsifiers content in parent latexes were determined. The results indicated that the stability of latex blends is favorable, and particle size distribution was more uniform and thermal stability was improved after blending.  相似文献   

4.
种子乳液聚合法制备多孔乳胶粒   总被引:15,自引:0,他引:15  
用批量乳液聚合法制备了苯乙烯(St)———甲基丙烯酸甲酯(MMA)二元共聚种子乳液S1以及St MMA 丙烯酸(AA)三元共聚种子乳液S2,通过连续法无皂种子乳液聚合合成了一系列不同AA或MAA(甲基丙烯酸)含量的St、MMA三元共聚乳液.将所得复合胶乳进行碱/酸分步处理,得到具有多孔结构的乳胶粒.用透射电镜对胶粒形态进行了表征,考察了不饱和酸种类和用量、碱处理初始pH值及溶胀剂对胶粒成孔的影响.  相似文献   

5.
The methacrylate monomer, 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate (IAOEMA), was synthesized by reacting 2-chloro-N-(5-methylisoxazol)acetamide dissolved in acetonitrile with sodium methacrylate in the presence of triethylbenzylammoniumchloride (TEBAC). The free-radical-initiated copolymerization of IAOEMA, with styrene (ST) and methyl methacrylate (MMA) was carried out in dimethylsulphoxide (DMSO) solution at 65 °C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer (IAOEMA) and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition was evaluated by nitrogen content in polymers led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Fineman-Ross and Kelen-Tüdös methods. The analysis of reactivity ratios revealed that ST and MMA are more reactive than IAOEMA, and copolymers formed are statisticalle in nature. The molecular weights (Mw and Mn) and polydispersity index of the polymers were determined using gel permeation chromagtography. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of IAOEMA in the copolymers. The apparent thermal decomposition activation energies (Ed) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

6.
We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2‐(dimethylamino)ethyl methacrylate)10block‐poly(methyl methacrylate)14. The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO2 bubbling with ultrasonication. The recovered latexes could then be coagulated by N2 bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO2/N2 bubbling.  相似文献   

7.
Soap‐free poly(methyl methacrylate‐ethyl acrylate‐acrylic acid or methacrylic acid) [P(MMA‐EA‐AA or MAA)] particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and acrylic acid (AA) or methacrylic acid (MAA), and the influences of the mass ratio of core/shell monomers used in the two stages of polymerization ([C/S]w) and initiator amount on polymerization, particle size and its distribution were investigated by using different monomer addition modes. Results showed that when the batch swelling method was used, the monomer conversion was more than 96.0% and particle size distribution was narrow, and the particle size increased first and then remained almost unchanged at around 600 nm with the [C/S]w decreased. When the drop‐wise addition method was used, the monomer conversion decreased slightly with [C/S]w decreased, and large particles more than 750 nm in diameter can be obtained; with the initiator amount increased, the particle size decreased and the monomer conversion had a trend to increase; the particle size distribution was broader and the number of new particles was more in the AA system than in the MAA system; but the AA system was more stable than the MAA system at both low and high initiator amount. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
An approach to the synthesis of highly branched vinyl copolymers containing thiol and C=C crosslinking groups is proposed. This method was exemplified by the emulsion copolymerization of methyl methacrylate (MMA) and 1,6-hexanediol diacrylate (HDDA) with 2-mercaptoethyl sulfide (MES) as chain transfer agent at 70°C with 4,4′-azobis(4-cyanovaleric acid) (ACVA) as the initiator. The resulting highly branched copolymers contain both thiol and acryloyl groups. The apparent Mw (by SEC) of the resulting copolymers increased with increasing ACVA concentration, whereas the pendent acryloyl and -SH groups decreased from 6.4% to 0.8% (relative to MMA units) and 45 ×10?5 to 5 × 10?5 mol/g, respectively. The copolymers of MMA could be self-crosslinked thermally or by exposure to UV irradiation. The gel fraction of the thermally treated samples decreased from 46% to 7.2%, with the increasing of ACVA in the polymer synthesis, while the gel fraction of UV irradiated samples changed only slightly around 70%.  相似文献   

9.
The styrene (St), butyl acrylate (BuA), and methyl methacrylate (MMA) polymerization in microemulsion in the presence of sodium dodecylsulfate is studied. This process is conducted in the presence of some comonomers having groups that can participate in sol–gel processes: 3(trimethyloxysilyl) propyl methacrylate (MPTS), triethoxy vinylsilane (VTES), and a comonomer with a sulfate group, styrene sodium sulfonate (StSO3Na). It has been observed that stabile latexes are obtained by radical polymerization at pH = 7, followed by a sol–gel process in the presence of ammonia. Latex particles sizes and zeta potential grow with MTPS concentration and in StSO3Na presence. VTES effect depends on its reactivity in St, MMA, and BuA copolymerization. Glass transition temperature and thermal decomposing temperature are influences by functional comonomer concentration and chemical structure. The Fourier transform infrared spectrum and inorganic residue growth after organic part thermal decomposition shows the presence of silica in obtained latexes.  相似文献   

10.

A new methacrylic monomer, 4‐nitro‐3‐methylphenyl methacrylate (NMPM) was prepared by reacting 4‐nitro‐3‐methyl phenol dissolved in methyl ethyl ketone (MEK) in the presence of triethylamine as a catalyst. Copolymerization of NMPM with methyl methacrylate (MMA) has been carried out in methyl ethyl ketone (MEK) by free radical solution polymerization at 70±1°C utilizing benzoyl peroxide (BPO) as initiator. Poly (NMPM‐co‐MMA) copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopy. The molecular weights (Mw and Mn) and polydispersity indices (Mw/Mn) of the polymers were determined using a gel permeation chromatograph. The glass transition temperatures (Tg) of the copolymers were determined by a differential scanning calorimeter, showing that Tg increases with MMA content in the copolymer. Thermogravimetric analysis of the polymers, performed under nitrogen, shows that the stability of the copolymer increases with an increase in NMPM content. The solubility of the polymers was tested in various polar and non‐polar solvents. Copolymer compositions were determined by 1H‐NMR spectroscopy by comparing the integral peak heights of well separated aromatic and aliphatic proton peaks. The monomer reactivity ratios were determined by the Fineman‐Ross (r1 =7.090:r2=0.854), Kelen‐Tudos (r1=7.693: r2=0.852) and extended Kelen‐Tudos methods (r1=7.550: r2= 0.856).  相似文献   

11.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of butyl acrylate (BA) and methyl methacrylate (MMA) on hydroxyl functionalized latexes was investigated. The hydrophobicity of the monomer feed was varied via the BA/MMA ratio. In addition to monitoring the effect of hydrophobic monomer feed on secondary nucleation, the polymerization kinetics and final latex properties were also obtained for comparison. Five different BA to MMA molar ratios were combined with five 2‐hydroxyethyl methacrylate (HEMA) concentrations (0, 10, 20, 30 and 40 mol% in monomer composition). All latexes were synthesized through seeded semibatch emulsion polymerization process. Particle size distributions and average particle sizes of the latexes were determined by dynamic light scattering (DLS) and qualitatively compared with transmission electron microscope (TEM) images. The BA to MMA ratio significantly influences the boundary HEMA concentration at which homogeneous secondary nucleation occurs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2190–2202  相似文献   

13.
Two series of butyl acrylate (BA)/acrylic acid (AA)/2‐hydroxy ethyl methacrylate latexes were produced via starved seeded semi‐batch emulsion polymerization. The first series, five latexes with gel contents ranging from 0 to 75 wt.‐%, were generated by varying the amount of chain transfer agent (CTA, n‐dodecyl mercaptan) in the absence of cross‐linker. The second series, two latexes with gel contents of 49 and 74 wt.‐%, were obtained by manipulating the amount of CTA in the presence of a constant cross‐linker (allyl methacrylate) concentration. Latexes with similar gel contents, one from each series, were compared with respect to their microstructure, viscoelastic properties and pressure‐sensitive adhesive performance. At similar gel contents, latexes obtained in the absence of cross‐linker had larger sol polymer molecular weight ($\overline {M} _{{\rm w}} $ ) and molecular weight between cross‐linking points (Mc), compared to the latexes generated using both CTA and cross‐linker. The different microstructures of latexes with similar gel contents resulted in significantly different viscoelastic properties and shear strength of the pressure‐sensitive adhesive films cast from the latexes.

  相似文献   


14.
The emulsion polymerization of styrene (St) and methyl methacrylate (MMA) induced by 10 MeV pulsed electron beams (PEB) was investigated. The monomer conversion of MMA and St was found to be very low so that the final prepared poly(methyl methacrylate) (P(MMA)) and polystyrene (PS) latex particles exhibit porous structures, as verified by TEM and SEM observations. The results of dynamic light scattering (DLS) and gel permeation chromatography (GPC) showed that both the particle size and the molecular weight of PS and PMMA latexes decrease with the increase of the absorbed dose. However, the molecular weights and the particle sizes of the PS and PMMA latexes change differently with the irradiation time. This work indicated that emulsion polymerization induced by high energy electron beam has an advantage over that induced by γ-ray or chemical initiators in the preparation of latex with a low molecular weight and porous structure.  相似文献   

15.
A series of non-fluorous random copolymers, composed of 3-[tris(trimethylsilyloxy)silyl] propyl methacrylate and 2-dimethylaminoethyl methacrylate, poly(SiMA-co-DMAEMA) with different comonomer ratios were prepared and utilized as stabilizers for the free radical dispersion polymerization of methyl methacrylate (MMA) in supercritical carbon dioxide (scCO2). It was demonstrated that the composition and concentration of the stabilizer have a dramatic effect on the morphology of resulting poly methyl methacrylate (PMMA) latex. When the copolymeric stabilizer poly(SiMA-co-DMAEMA) (71:29) was employed, free-flowing spherical PMMA particles were produced in high yield. As the concentration of stabilizer increases, the resulting size of colloidal particles decreases. In addition, the monomer concentration and initial pressure affected the particle diameter of PMMA.  相似文献   

16.
A neutral nickel σ-acetylide complex [Ni(CCPh)2(PBu3)2] (NBP) is used for possible atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in conjunction with an organic halide as an initiator [R-X: CCl4, CH3Cl, BrCCl3, C2H5Br, and C5H9Br] in toluene at 80 °C. Among these initiating systems, BrCCl3/NBP gave the best controlled radical polymerization of MMA and produced polymer with relatively narrow molecular weight distribution (Mw/Mn≈1.3). The ATRP of MMA is preliminarily identified by the following facts: (1) the present MMA polymerization initiated by BrCCl3/NBP is completely hindered by the addition of TEMPO; (2) the conversion shows a typical linear variation with time in semilogarithmic coordinates; (3) the measured number-average molecular weights of polymer show a linear increase with conversion and agree closely with the theoretical values; (4) the resulting polymer chain contains a dormant carbon-halogen terminal.  相似文献   

17.
A water-soluble hyperbranched polymer (WHBP), obtained from a second generation of hyperbranched polyester and maleic anhydride, was studied. Its effects on the properties of acrylic latexes, which were based on emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA), acrylic acid (AA) and WHBP, and latex film were discussed. The characteristics of WHBP were determined by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). Particle size and morphology of latex particles were confirmed by dynamic light scattering (DLS) and transmission electron microscope (TEM). The investigation showed that WHBP could be used in emulsion polymerization, and that latex of poly(BA-MMA-WHBP) was more stable than that of poly(BA-MMA-AA). The hardness of latex film increased from 2B to HB when WHBP was used.  相似文献   

18.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

19.
In this study, photoirradiated Fe-mediated AGET (activators generated by electron transfer) atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was investigated at ambient temperature in N,N-dimethylformamide (DMF) using carbon tetrachloride as initiator, FeCl3·6H2O/bipyridine (Bpy) as catalyst complex, and alcohol as reducing agent. Linear semi-logarithmic plot of conversion vs. time was obtained from the kinetic experiments, and the number-average molecular weight increased linearly with monomer conversion and corresponded to the theoretic values with molecular weight distributions (Mw/Mn) as low as 1.25, which agreed with the character of controlled/living polymerization. The kinds of alcohol played an important role in photoirradiated Fe-mediated AGET ATRP of MMA. The living characteristics were demonstrated through chain extension experiment. The obtained polymer was characterized by proton nuclear magnetic resonance (NMR) and gel permeation chromatography.  相似文献   

20.
A novel reversible addition–fragmentation chain transfer polymerization (RAFT) of methyl methacrylate (MMA) in the presence of oxygen was carried out for the first time without added chemical initiators. The polymerization was mediated by 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) or cumyl dithionaphthalenoate (CDN) as RAFT agent. The polymerization demonstrated the features of a living/controlled radical polymerization. The polymerization rate increased with oxygen concentration. Polymers with molecular weight Mn up to 520,000 g/mol, polydispersity Mw/Mn ~1.46 and RAFT efficiency Mn,th/Mn,GPC ~1.026 in the case of CPDN and Mn ~331,500 g/mol, Mw/Mn ~1.35, and Mn,th/Mn,GPC ~1.137 in the case of CDN were obtained. The possible mechanism of the thermal‐initiated RAFT polymerization of MMA in the presence of oxygen was discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3343–3354, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号