首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PVCL) block copolymers were synthesized as new biocompatible, thermosensitive, amphiphilic block polymers by a combination of ring-opening polymerization and reversible addition–fragmentation chain transfer (RAFT) polymerization, and their thermosensitive micellar behavior was examined. The PCL macro-chain-transfer agent was first synthesized by converting the end group of PCL-OH to O-ethyl xanthate, which was subsequently used for the RAFT polymerization of N-vinylcaprolactam. The critical micelle concentration of PCL-b-PVCL (M n,NMR?=?56,300?g/mol, polydispersity index?=?1.18) was 0.026?mg/mL. The mean diameter of the PCL-b-PVCL micelles determined by transmission electron microscopy was 55?±?25?nm. The PCL-b-PVCL micelles exhibited repetitive aggregation and dispersion during reversible cooling and heating cycles between 20 and 40?°C due to the thermosensitive behavior of the PVCL shell. Overall, the PCL-b-PVCL block copolymers have potential applications in thermosensitive drug delivery applications.  相似文献   

2.
Two calixarene derivatives (2a, 2b) have been synthesized and used as macro-initiators to prepare star-shaped poly(ε-caprolactone)s (SPCLs) via controlled ringopening polymerization of ε-caprolactone in the presence of yttrium tris(2,6-di-tert-butyl-4-methylphenolate) [Y(DBMP)3]. The molecular weight of SPCLs was characterized by end group 1H-NMR analyses and size-exclusion chromatography (SEC). The results indicate that SPCLs based on a calix[4]arene derivative (2a) are well-defined four-arm star polymers with reasonably narrow molecular weight distributions in the given molecular weight range, while SPCLs based on a calix[6]arene derivative (2b) are star polymers with not so defined structures. Differential scanning calorimetry (DSC) analyses suggest that the maximal melting point, the crystallization temperature and the degree of crystallinity of SPCLs increases with the increasing molecular weight and are lower than those of the liner poly(ε-caprolactone) (LPCL) counterpart. Furthermore, polarized optical microscopy (POM) indicates that SPCL exhibits irregular spherulites with poor morphology and slower crystallization rate, whereas LPCL shows fast crystallization rate and good spherulitic morphology. __________ Translated from Acta Polymerica Sinica, 2007, 10: 967–973 [译自:高分子学报]  相似文献   

3.
Bio-based poly(isosorbide 2,5-furandicarboxylate-co-ε-caprolactone) (PIFCL) copolyesters were synthesized from 2,5-furandicarboxylic acid, isosorbide and ε-caprolactone. The obtained copolyesters were characterized by 1H NMR, 13C NMR, intrinsic viscosity, GPC, DSC, TGA and tensile testing. The NMR characterization results confirmed the insertion of lactones units into poly(isosorbide 2,5-furandicarboxylate) (PIF) chains. All PIFCL copolyesters were amorphous with TD, 5% higher than 300 °C. The glass transition temperatures of PIFCLs with FDCA molar ratio from 74% to 45% were within the range of 132.1 °C and 72.4 °C. Tensile testing revealed that introduction of ε-caprolactone into PIF chain imparted PIFCL with excellent mechanical performance, typically, PIFCL polyseter with FDCA molar ratio of 45% had a Young's modulus 858 ± 92 MPa, a tensile strength 44 ± 4 MPa and an elongation at break 480 ± 45%.  相似文献   

4.
Thermal and representative physico-mechanical properties of newly prepared poly[(ε-caprolactam)-co-(ε-caprolactone)] and poly[(ε-caprolactam)-co-(δ-valerolactone)] copolymers were studied. The copolymers were synthesized by anionic polymerization of ε-caprolactam activated by isocyanate end-capped oligomeric aliphatic polyesters designated as the macroactivators (MAs). Type, concentration and molecular weight of the MAs were varied, which resulted in copolymers with different structure and properties. The impact of the new MAs used in this study on the glass transition temperature and the melting temperature of poly-ε-caprolactam was investigated by DSC. DMTA was used to analyze the effect of copolymerization on the storage modulus (E) and tan δ of poly-ε-caprolactam. Conventional and high-resolution TGA data revealed that all the synthesized polyesteramides possess good thermal stability. Mechanical properties were studied by notched impact and tensile testing. According to the experimental data the impact toughness increase with the MA content, being six time higher compared to the poly(ε-caprolactam) in the best situation. Water absorption was also considered in relation to the composition of the copolymers.  相似文献   

5.
In this work, we reported the synthesis of a dodecahydroxyl-functionalized macrocyclic oligomeric silsesquioxane (MOSS). The novel 24-membered hydroxyl-functionalized MOSS was employed as a macroinitiator for the ring-opening polymerization of ε-caprolactone (CL) and the organic–inorganic macrocyclic molecular brushes with poly(ε-caprolactone) (PCL) side chains were successfully synthesized. The organic–inorganic macrocyclic molecular brushes were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). The results of wide angle X-ray diffraction (XRD) indicate that the architecture of the organic–inorganic macrocyclic molecular brushes did not alter the structure of PCL crystals. Differential scanning calorimetry (DSC) shows that the architecture of organic–inorganic macrocyclic molecular brushes significantly affected the rearrangement of PCL crystals. Compared to linear PCL, the organic–inorganic macrocyclic molecular brushes possessed the improved thermal stability in terms of the temperatures at the maximum of degradation rate and the yields of degradation residues.  相似文献   

6.
Well-defined linear dihydrophilic amphiphilic ABA-type triblock copolymers of ε-caprolactone (CL) and N-isopropylacrylamide (NIPAAm) have successfully been synthesized with a high yield by combining the ring opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization methods. The resulted block copolymer shows the formation of micelles in water as supported by light scattering. The critical micelle concentration (cmc) value of the micelle increases with the increase in the chain length of the poly (N-isopropylacrylamide) (PNIPAAm) block. Cloud point of the block copolymers decreases with the decrease in the PNIPAAm chain length. The TGA analysis shows a one-step degradation and a lower thermal stability of the triblock copolymer than the PNIPAAm. The DSC analysis of the triblock copolymer shows the lowering of glass transition temperature (T g), and melting temperature (T m) peaks possibly due to the partial miscibility of the poly (ε-caprolactone) (PCL) block with the amorphous PNIPAAm block through the interaction of ester groups of PCL with the amide groups of PNIPAAm. The XRD pattern of the triblock copolymer shows a broad peak due to the suppression of the crystallization of PCL block owing to the mixing of PNIPAAm block with the PCL block.  相似文献   

7.
Synthesis of poly(?-caprolactone-b-ethylene glycol-b-?-caprolactone) ABA type block copolymer by “click” chemistry and ring-opening polymerization (ROP) was reported by using propargyl polyethylene glycol (propargyl-PEG) and terminally azido poly(?-caprolactone) ester (PCL-N3). For this purpose, primarily propargyl-PEG was synthesized by using reaction of PEGs (3000 Da, 2000 Da, 1500 Da, 1000 Da, 600 Da ve 400 Da) and propargyl chloride. 3-azido-1-propanol was obtained by using chemical interaction of 3-chloro-1-propanol and sodium azide. Synthesis of PCL-N3 was carried out by means of ROP of ?-caprolactone and 3-azido-1-propanol. Finally, poly(?-caprolactone-b-ethylene glycol-b-?-caprolactone) ABA type block copolymers were synthesized by using PCL-N3 and propargyl-PEG. The primary parameters such as concentration, time, and temperature that influenced the reactions were assessed. The product characterization was achieved using NMR, FT-IR, GPC, elemental analysis, and fractional precipitation [non-solvent (petroleum ether-mL)/solvent (THF-mL)] techniques.  相似文献   

8.
Copolyesteramides of 2-pyrrolidone with ε-caprolactone were synthesized by ring-opening copolymerization. The copolymers were random-like and their melting temperature and heat of fusion were dependent on the polymer composition. Biodegradation by a polyamide 4 (PA4) degrading microorganism showed rapid degradation in the region of amide-rich polymer composition. On the contrary, enzymatic hydrolysis using a lipase resulted in a different tendency, that is, ester-rich copolymers hydrolyzed rapidly. Activated sludge makes copolymers degrade to CO2 in wide polymer composition ratio. Copolyesteramides are expected to be applied as an environmentally-friendly plastics or bioabsorbable polymers in medical fields.  相似文献   

9.
This study demonstrates that the step-heating calorimetry, which is a kind of temperature-modulated differential scanning calorimetry, can provide valuable information on the polymer melting. Time-dependent heat flow due to the melting of lamellar crystallites in a narrow range of thickness can be directly observed, from which thickness distribution of lamellar crystallites and thickness dependence of the melting kinetics are deduced. A sample of poly(ε-caprolactone) was used as a model material of semi-crystalline polymer, which has high crystallinity (0.79) so that no recrystallization and/or reorganization occur during melting in the step-heating scan. It was revealed that superheating dependence of the melting rate coefficient increases with increasing lamellar thickness, which may be attributed to variation of the fold surface roughness with respect to lamellar thickness. Analysis based on the cylindrical nucleation model revealed much lower free energy values of lateral surface than that evaluated from crystallization behavior, suggesting that the nucleus for melting is more stable than that for crystallization.  相似文献   

10.
Well-defined graft copolymers were obtained using a copper-catalysed azide-alkyne Huisgen's cycloaddition click reaction from both biocompatible and non-toxic poly(ε-caprolactone) and poly(2-methyl-2-oxazoline) homopolymers. Resulting amphiphilic copolymers proved to form micelles that could be used as potential drug carriers.  相似文献   

11.
Thermodegradative investigations of two classes of multi-block copolymers containing poly(D,L-lactic-glycolic acid) (PLGA) and either poly(ethylene glycol) (PEG) or poly(ϵ-caprolactone) diol-terminated (PCDT) segments were performed. In particular, the influence of the type and length of the segments as well as of the molar ratio between the D,L-lactic acid (LA) and glycolic acid (GA) residues was investigated at 180°C in air by viscometry, FT-IR analysis and isothermal thermogravimetry. The thermal oxidative degradation of these materials is largely affected by the LA/GA ratio, a higher LA content generally imparting higher stability. The FT-IR analysis suggests that, depending on the composition of the PLGA segments, degradative processes are triggered which can lead to a preferential degradation of the blocks.  相似文献   

12.
A facile strategy was proposed for synthesizing chitosan-O-poly(ε-caprolactone) (CS-O-PCL). Stoichiometric sodium dodecyl sulfate-chitosan complex (SCC) which was soluble in common organic solvents was adopted as an intermediate. Regioselective conjugation of PCL onto SCC could be achieved through condensation reaction between isocyanate-terminated PCL and hydroxyl groups of chitosan. The grafting level of PCL could be modulated by varying PCL/SCC weight ratio. SDS was removed from SCC-O-PCL using trihydroxymethylamine (Tris) as a decomplexation agent. The self-assemble behavior of the amphiphilic copolymers was studied by fluorometry, TEM and laser light scattering. The morphology of the CS-O-PCL nanoparticles was found to be dependent on PCL grafting level. Both spherical micelles and vesicle could be formed by dialysis method.  相似文献   

13.
A series of copolymers with various compositions were synthesized by one-step and two-step bulk ring-opening polymerizations of L -lactide (LA) and ε-caprolactone (CL) using stannous octoate [Sn(Oct)2] and 1-hexanol as the initiating system. For the sequential two-step polymerization, a poly(ε-caprolactone) (PCL) prepolymer was polymerized first to a percent conversion of approximately 70% and LA then added in order to produce a copolymer with a chain microstructure different from that obtained from the corresponding one-step reaction. The resulting copolymers were characterized using a combination of nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The average sequence lengths of the lactidyl ( ) and caproyl ( ) units, the degree of randomness (R) and the transesterification coefficient (T(II)) were calculated from the 13C-NMR spectra. The appearance of a signal due to CapLCap sequences was directly attributable to transesterification of lactidyl (LL) units. It was found that both and values from the two-step syntheses were significantly longer than from the corresponding one-step syntheses, leading to different semi-crystalline morphologies and chain microstructures. The copolymers all showed at least some blocky chain structure as a result of the significant difference in monomer reactivity (LA > CL) between LA and CL. Thermal properties including stability depended on both composition and chain microstructure which could be controlled by the method of synthesis. From their DSC curves, the two-step copolymers were seen to be semi-crystalline whereas the one-step copolymers were mainly amorphous. A more blocky microstructure, as obtained from the two-step method, appeared to result in a lower thermal stability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Amphiphilic block copolymers were synthesised by ring opening polymerization of ε-caprolactone with polyethylene glycol monomethyl ether (PEG-MME) using different catalysts (boron trifluoride, sodium hydride, and tin octoate) in a one pot procedure. The products obtained were characterized with respect to their molar mass distribution and content of homopolymers using size exclusion chromatography (SEC), Liquid chromatography under critical conditions (LCCC) and MALDI-TOF-MS. The homopolymers of caprolactone could be separated from the block copolymer by LCCC on a reversed phase column in tetrahydrofurane-water mobile phases with evaporative light scattering detection (ELSD). Residual monomer could be determined under the same conditions using density detection, a separation of the copolymer from residual initiator could be achieved on a normal phase column in acetone-water mobile phases.  相似文献   

15.
16.
Novel amphiphilic copolymers based on poly(ε-caprolactone) (PCL) and hyperbranched poly (amine-ester) (HPAE) with various compositions were synthesized. The amphiphilic copolymers can self-assemble into nanoscopic micelles and their hydrophobic cores can encapsulate doxorubicin (DOX) in aqueous solutions. The DOX-loaded HPAE-co-PCL nanoparticles diameter increased from 121 to 184 nm with the increasing PCL segment in the copolymer composition. An in vitro study at 37°C demonstrated that DOX-release from nanoparticles at pH 5.0 was much faster than that at pH 7.4. The cytotoxicity for HeLa cells study demonstrated that DOX-loaded HPAE-co-PCL nanoparticles exhibited the anti-tumor effect was enhanced significantly, suggesting that the DOX-loaded HPAE-co-PCL nanoparticles have great potential as a tumor drug carrier.  相似文献   

17.
Amphiphilic block copolymers based on HPMA and ε-CL were synthesized by ring-opening polymerization of ε-CL followed by RAFT polymerization of HPMA. A copolymer composed of 34 kDa PHPMA and 8.5 kDa PCL associated into micelles with CMC of 5.4 μg · mL(-1) . A novel retinoid, 3-Cl-AHPC-OMe, was incorporated into micelles with 25 wt.-% loading by dialysis method. The effective diameter of drug loading micelles was 117 nm. Incubation of micelles in PBS at 37 °C indicated 86 wt.-% of the drug was released after 96 h. Cytotoxicity studies performed with C4-2 prostate cancer cells showed the IC(50) dose was 1.96 μM after 72 h of incubation, whereas the micelles without drug showed no cytotoxicity.  相似文献   

18.
Copolyesters of poly(ε-caprolactone) diol and 1,18-octadecane dicarboxylic acid were synthesized by polyaddition. The copolymers have a "mixed" structure of ’polyester-polyethylene’. Characterization was carried out by using 1H and 13C NMR, FT-IR, viscosities, DSC, and GPC. The tensile strength varied from 11.9 to 19.9 MPa, and elongation at break varied from 370 to 660 %, respectively. Biodegradability was evaluated by enzymatic hydrolysis (lipases from Rhizopus arrhizus and Candida cylindracea and an esterase form hog liver) and by soil burial test. Both tests showed that the copolyesters were characterized by enhanced biodegradability.  相似文献   

19.
In this work, the poly(styrene-vynil pyridine) block copolymer was used as a porous pattern to study the electrodeposition of gold inside the pores, as a new method to obtain gold nanoparticles. The porous pattern left by the copolymer film onto a conductive glass surface was characterized by atomic force microscopy (AFM), evidencing pores of 30 nm diameter. After the electrodeposition, 30 nm diameter gold nanoparticles were obtained and they were characterized by cyclic voltammetry (CV) and AFM, and then used to study the adsorption of glucose oxidase enzyme. The adsorption process of glucose oxidase on gold nanowires was investigated by CV and electrochemical impedance spectroscopy. The morphological and capacitance results indicate that the block copolymer–gold nanoparticle composite seems to be a good candidate to design biosensors and immunosensors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号