首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The mechanical response of ethylcyclohexane has been investigated at ultrasonic frequencies in a large temperature range from 300 K down to the glass transition region. The results indicate the existence of a secondary relaxation not yet reported for this system. The comparison with literature data leads to a rather complex dynamic behavior. In fact, this molecular liquid exhibits three different mechanical relaxations above the glass transition temperature: a main structural process and two additional processes, both having a possible intramolecular origin.  相似文献   

2.
Heat capacities of guayule and natural rubbers were measured between 228 and 333 K using a DuPont 990 Differential Scanning Calorimeter. Data obtained were fitted to a straight line. We obtained the following equations where Cp is given in cal g?1 K?1. For guayule rubber, Cp = 22.6152 × 10?4T + 0.7731 (correlation factor = 0.99). For natural rubber. Cp = 16.9195 × 10?4T + 0.9209 (correlation factor = 0.98). Furthermore, some theoretical considerations and instrumental conditions were analyzed so that the determinations of heat capacities could be improved.  相似文献   

3.
Materials with promising mechanical performance generally demonstrate requirements for the critical sizes of their key building units, e.g. entanglements and crystal grains. Herein, only with van der Waals interaction, viscoelasticity with broad tunability has been facilely achieved below the critical size limits: the dimers of ∼1 nm polyhedral oligomeric silsesquioxane (POSS) with Mw < 4 kD and size < 5 nm, which demonstrate distinct material physics compared to that of polymer nanocomposites of POSS. The dimeric POSSs are confirmed by scattering and calorimetrical measurements to be intrinsic glassy materials with glass transition temperatures (Tgs) lower than room temperature. From rheological studies, their viscoelasticity can be broadly tuned through the simple tailoring of the dimer linker structures above their Tg. In dimer bulks, each POSS cluster is spatially confined by the POSSs from other dimers and therefore, the correlation of the dynamics of the two linked POSS clusters, which, as indicated by dynamics analysis, is regulated by the length and flexibilities of linkers, contributes to the caging dynamics of POSS confined by their neighbours and the resulting unique viscoelasticity. Our discoveries update the understanding of the structural origin of viscoelasticity and open avenues to fabricate structural materials from the design of sub-nanoscale building blocks.

The critical size limit for general structural material design is challenged in the dimers of sub-nm molecular clusters that possess small sizes (<5 nm) and broadly tunable viscoelasticity.  相似文献   

4.
A method is proposed to analyze the effect of pressure on permeation of gases through semicrystalline polymers above the glass transition temperature. The method utilizes similarities in molecular diameters of the gases and differences in their solubilities. Two polymers, polyethylene and polypropylene, and a series of gases are chosen for an application of the method, and the effect of pressure on the permeabilities for 10 gases is measured in the pressure range 1–130 atm at 25°C. For polymers, the logarithm of the permeability coefficient is linear in the pressure for each gas, with negative slope for slightly soluble gases (He, Ne, H2, N2, O2, and Ar) and positive slope for highly soluble gases (CH4, Kr, CO2, and N2O). Analyzing these slopes by the method proposed permits contributions of hydrostatic pressure and concentration to the pressure dependence of permeation to be evaluated. On the basis of the results, the mechanism of gas permeation in rubbery films under high pressures is discussed.  相似文献   

5.
The definition of the glass transition temperature, T g, is recalled and its experimental determination by various techniques is reviewed. The diversity of values of T g obtained by the different methods is discussed, with particular attention being paid to Differential Scanning Calorimetry (DSC) and to dynamic techniques such as Dynamic Mechanical Thermal Analysis (DMTA) and Temperature Modulated DSC (TMDSC). This last technique, TMDSC, in particular, is considered in respect of ways in which the heterogeneity of the glass transformation process can be quantified.  相似文献   

6.
A round robin test was performed to determine the reliability of values for the glass transition temperatureT g as determined by DTA on polymers. Ten different instruments were involved. The test material was high molecular weight polystyrene. Values forT g (midpoint) were reported in the range 107°C±2 K. The respective heat flow curves differed considerably in shape. In the literature aT g of 100°C is often given for polystyrene. The discrepancy between this value and the value of 107°C found in the round robin test is due to three differences: the thermal history of the sample, the evaluation of the heat flow curves, and the effect of finite sample size.  相似文献   

7.
We develop an analytic theory to estimate the glass transition temperature T(g) of polymer melts as a function of the relative rigidities of the chain backbone and side groups, the monomer structure, pressure, and polymer mass. Our computations are based on an extension of the semiempirical Lindemann criterion of melting to locate T(g) and on the use of the advanced mean field lattice cluster theory (LCT) for treating the thermodynamics of systems containing structured monomer, semiflexible polymer chains. The Lindemann criterion is translated into a condition for T(g) by expressing this relation in terms of the specific volume, and this free volume condition is used to calculate T(g) from our thermodynamic theory. The mass dependence of T(g) is compared to that of other characteristic temperatures of glass-formation. These additional characteristic temperatures are determined from the temperature variation of the LCT configurational entropy, in conjunction with the Adam-Gibbs model for long wavelength structural relaxation. Our theory explains generally observed trends in the variation of T(g) with polymer microstructure, and we find that T(g) can be tuned either upward or downward by increasing the length of the side chains, depending on the relative rigidities of the side groups and the chain backbone. The elucidation of the molecular origins of T(g) in polymer liquids should be useful in designing and processing new synthetic materials and for understanding the dynamics and controlling the preservation of biological substances.  相似文献   

8.
The effect of particle size on glass transition temperatures is discussed. The phenomenon is treated in terms of Ehrenfest second-order thermodynamics and in addition related to free volume concepts. Consistent formulas are obtained and the order of magnitude of the effect is estimated.  相似文献   

9.
In view of the lack of precise experimental data in the literature concerning the determination of a definedTg value for natural rubber (NR) and the differences when such data are given, a reference definition ofTg(Vo) is offered and a procedure for obtaining it described in detail. It is proposed that the value obtained for uncured NR of 200.5 K be used as a low temperature standard in the study of other polymerTg's which occur in this region.  相似文献   

10.
11.
In the present research, a novel dynamic constitutive micromechanical (DCM) model was developed to predict the strain rate dependent mechanical behavior of laminated glass/epoxy composites. The present model is an integration of the generalized strain rate dependent constitutive model as a constitutive model for the neat polymer, the plasticity model of Huang as a micromechanical model, and dynamic progressive failure criteria. This model is able to predict the longitudinal and transverse tensile and in-plane shear behaviors of unidirectional glass/epoxy composites with arbitrary fiber volume fractions at arbitrary strain rates. The present model can also predict the stress-strain behavior of laminated composites with different layups and fiber volume fractions at arbitrary strain rates. A comparison between the results predicted by the present model and the available experimental data showed that the model predicts the strain rate dependent mechanical behavior of glass/epoxy composites with very good accuracy.  相似文献   

12.
The aim was to determine the relevance of the glass transition temperature (Tg) on the compressibility and compactibility of different excipients as celluloses, cellulose derivatives, lactoses, starch, maltodextrin and carrageenan. Their Tg was determined, they were tableted on an instrumented eccentric tableting machine and crushing force was analyzed. Using force, time and displacement tableting behavior was analyzed by 3D modeling. The parameters obtained, d (time plasticity), e (pressure plasticity) and w (fast elastic decompression), show different deformation mechanisms for the materials in relation to their Tg. Further, if the Tg can be reversibly exceeded during tableting, crushing force is high, otherwise crushing force is lower. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We present a molecular-dynamics study of the solvent reorganization energy of electron transfer in supercooled water. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect as discussed by the mode coupling theory. Both the heat capacity and dielectric susceptibility of the pure water show sharp drops at about the same temperature. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to Debye relaxation of the solvent dipolar polarization.  相似文献   

14.
Dielectric relaxation measurements were made on methyl methacrylate—styrene and methyl methacrylate–p-chlorostyrene copolymers at temperatures higher than the glass transition temperature Tg. It was found that the temperature dependence of the relaxation time can be described satisfactorily by an expression derived recently for chain motion in amorphous polymers. The temperature Tg obtained from the expression agrees well with that determined by differential thermal analysis.  相似文献   

15.
Sorption and dilation isotherms for argon in poly(ethyl methacrylate) (PEMA) are reported for pressures up to 50 atm over the temperature range 5–85°C. At temperatures below the glass transition (Tg=61°C), sorption isotherms are well described by the dual-mode sorption model; and isotherms above Tg follow Henry's law. However, isotherms for dilation due to sorption are linear in pressure at all temperatures over the range investigated. Partial molar volumes of Ar in PEMA are obtained from these isotherms. The volumes are approximately constant above Tg (about 40 cm3/mol), whereas the volumes below Tg are smaller and dependent on both temperature and concentration (19–26 cm3/mol). By analyzing the experimental data according to the dual-mode sorption and dilation model, the volume occupied by a dissolved Ar molecule and the mean size of microvoid in the glass are estimated to be 67 129 Å3, respectively. The cohesive energy density of the polymer is also estimated as 61 cal/cm3 from the temperature dependence of the dual-mode parameters.  相似文献   

16.
The old controversial idea of structures in molten amorphous polymers is being accepted with theoretical and experimental evidence. Wool's twinkling fractal theory of the glass transition and recent atomic force micrographs are convincing proof of the dynamic, solid aggregate presence below and above Tg. This article offers detailed analysis of the experimental data from high‐pressure dilatometry, as well as from the oscillatory shear tests in the glassy and the molten state of polystyrenes. The results indicate the presence of a transient structure at T > Tg; transient as it depends on the structure of the vitreous polymer and the rate of heating it across Tg. Thus, molten polymer is not always at the thermodynamic equilibrium. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1369–1380, 2011  相似文献   

17.
Summary A theoretical expression of the value of the glass-transition temperatureT g at any direction of orientation, defined by the angle subtended between this direction and the average axis of fibers; was introduced. Dilatometric, as well as dynamic tests were executed for a type of unidirectional composite in order to compare the respective values ofT g derived from these tests. The experimental results were also compared with theoretical values derived from the theoretical expression. A satisfactory agreement between, theory and experiment was established.With 5 figures and 1 table  相似文献   

18.
19.
The glass transition temperatures of alkali (Na, K, Rb, Cs) and alkaline-earth (Ba, Sr, Ca, Mg) ionomers of sulfonated polystyrenes (PSSA) with 3.4, 6.9, 12.7, and 16.7% of the styrene moieties sulfonated are reported. For the alkali-metal PSSA ionomers, Tg depends on the degree of sulfonation, at least up to 13%, but not strongly on the nature of the cation. For the alkaline-earth analogs Tg does not depend strongly on either the cation or the degree of sulfonation until the 16.7% level is reached. These and other reported data are discussed in terms of the role of cations in determining morphology.  相似文献   

20.
The pressure dependence below 1 atm of the apparent diffusion and permeation coefficients were observed by using the permeation time lag method for carbon dioxide in poly(vinyl acetate), which has a glass transition near room temperature, at temperatures ranging from 8 to 50°C. Above the glass transition temperature, pressure dependence of the diffusion and permeation coefficient has not been observed; hence, Fick's law with a concentration independent diffusion coefficient applies. On the other hand, in the glassy state, the apparent diffusion coefficient shows pressure dependence. Moreover, the behavior of the pressure dependence does not show a clear curve in the ranges between 30°C to 17°C. Above 17°C, the apparent diffusion coefficients show discontinuities, but below 17°C increase with pressure is regular. Using the theoretical prediction of Paul, a computer was used in the numerical calculation to determine the true diffusion coefficient and other dual sorption parameters. p]The compensated diffusion coefficients controlled only by Henry's law dissolution was described by three straight lines with two intersection in the form of Arrhenius plots, which give good agreement with both our results for He and Ar and those of Meares. It is assumed that beside the dual sorption mechanism, another effect, for instance some relaxation effect may also contribute to the diffusion for carbon dioxide in poly(vinyl acetate) near the glass transition temperature region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号