首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The electro-responsive transdermal drug delivery system was prepared by electrospinning of poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. The surface modification of MWCNTs was carried out by oxyfluorination to introduce the functional groups on the hydrophobic MWCNTs. The dispersion of MWCNTs and the compatibility with polymer matrices were improved by oxyfluorination. The MWCNT content and oxyfluorination condition played important roles in the swelling and drug release characteristics of nanofibers. The conductivity of nanofibers increased by increasing the content of MWCNTs and performing oxyfluorination with higher oxygen content. Uniform distribution of the oxyfluorinated MWCNTs in the nanofibers was crucial to the electro-responsive swelling and drug releasing behaviors of nanofibers.  相似文献   

2.
In this study, the surface modification of multi-walled carbon nanotubes (MWCNTs) with acid and oxyfluorination has been examined. Acid treatment of multi-walled CNTs produces many functionalized groups on the surface of MWCNTs, such as C-N stretching and the asymmetric carboxylate group (-COO-). It can be concluded that nitrogen doping of the graphite sheets may take place and a C-N bond identical to the sp3-bonded carbon nitride may form during the acid treatment process. In addition, oxyfluorinated MWCNTs exhibit higher BET specific surface area and mesopore volume than those of the as-received and acid treated MWCNTs. Therefore, acid and oxyfluorination treatments are more effective methods for enhancing the chemical and textural properties of MWCNTs.  相似文献   

3.
A flexible and multi-layered graphene nanosheets (GNSs)-Fe3O4/poly (vinylidene fluoride) hybrid composite film with high-efficient electromagnetic interference (EMI) shielding was fabricated via a facile layer-by-layer coating. The well-designed multi-layered and hybrid electromagnetic fillers endow the prepared film with good surface impedance matching and prominent internal multiple absorption, which forms “absorb-reflect-reabsorb” electromagnetic transmission pattern and results in highly efficient electromagnetic shielding effectiveness (EMI SE). The resultant composite film exhibits an exceptional EMI SE of 52.0 dB at a thickness of 0.3 mm. What is more important is that the prepared film exhibits excellent flexibility and EMI stability, and the retention rate of efficient EMI SE is high as 91.9% after 1000 bending-release cycles. This study provides a feasible strategy for designing high-efficient EMI shielding film with excellent flexibility and ultra-thin thickness that suitable for next-generation intelligent protection devices.  相似文献   

4.
Electrically conducting Au‐multiwalled carbon nanotube/polyaniline (Au‐MWCNT/PANi) nanocomposites were synthesized by two different ways: (1) by direct mixing of MWCNT/PANi and Au nanoparticles (Au‐MWCNT/PANi‐1) and (2) by in situ polymerization of aniline in the presence of both MWCNTs and Au nanoparticles (Au‐MWCNT/PANi‐2). The higher electrical conductivity of Au‐MWCNT/PANi‐2 compared with the other samples (PANi, MWCNT/PANi, Au‐MWCNT/PANi‐1) is supported by the red shifts of the UV‐vis bands (polaron/bipolaron), the high value of the –NH+= stretch peak (Fourier transform infrared spectroscopy studies), the high % crystallinity (X‐ray diffraction analysis) and more uniform dispersion of the Au NPs in the material. The performance of the samples in electromagnetic interference (EMI) shielding and microwave absorption was studied in the X‐band (8–12 GHz). For all the samples, absorption was the dominant factor contributing toward the EMI shielding. Au‐MWCNT/PANi‐2 showed the best performance with a total shielding effectiveness of ?16 dB [averaged over the X‐band (GHz)] and a minimum reflection loss of ?56.5 dB. The higher dielectric properties resulting from the heterogeneities because of the presence of nanofillers and the high electrical conductivity lead to the increased EMI shielding and microwave absorption. The results show the significance of both Au nanoparticles and method of synthesis on the EMI shielding performance of MWCNT/PANi composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Highly conducting polyaniline (PANi)-coated multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization method for electromagnetic interference shielding. The thickness of the PANi coatings was controlled by the oxyfluorination treatment on the multi-walled carbon nanotubes and analyzed with both SEM and TEM. The oxyfluorination with higher oxygen content produced more hydrophilic functional groups on the surface of multi-walled carbon nanotubes. The functional groups led to the well distribution and coating of PANi on the multi-walled carbon nanotubes resulting in the higher interfacial affinity between them. The uniform coating of PANi on MWCNTs by controlling the oxyfluorination conditions also played a crucial role in increasing the electrical conductivity of nanocomposites. The improved interfacial affinity resulted in the higher electromagnetic interference (EMI) SE of 47.03?dB based on the synergistic combination of the conductive components. The EMI shielding mechanism of PANi on MWCNTs suggested that EMI was mainly shielded by adsorption to avoid secondary EMI.  相似文献   

6.
《先进技术聚合物》2018,29(1):560-564
This paper is an attempt to find out application of red mud in controlling electromagnetic pollution. Composite of PoT/RM has been prepared by in‐situ chemical oxidative polymerization and has been tested for electromagnetic shielding effectiveness. Red mud here acted as a filler material. The incorporation of 50 wt% red mud in the polymer matrix results in a shielding effectiveness of 8.9 dB in 8.2 to 12.4 GHz frequency range (X‐band). Furthermore, the structural analysis, morphology, and magnetization have been studied using XRD, TEM, and VSM techniques, respectively. TEM image of the composite shows the distribution of red mud particles in the polymer matrix. The magnetization decreases on incorporation of red mud in the polymer matrix.  相似文献   

7.
The functionalized multi‐walled carbon nanotubes (MWNT) had been prepared by free radical reaction with vinyltriethoxysilane. Polydimethylsiloxane (PDMS)‐based poly(urea urethane) (PUU) was also synthesized. PUU was further end‐capped with aminopropyltriethoxysilane (A‐silane), or with phenyltrimethoxysilane (P‐silane). Fourier transform infrared (FTIR), Raman spectra and thermogravimetric analysis (TGA) confirmed the functionalization of MWNT. The Mn and Mw of PUU were 85,123 and 235,876 g/mol, respectively. Both A‐silane end‐capped PUU and P‐silane end‐capped PUU showed improved dispersion of MWNT compared with that of PUU and MWNT. Moreover, the reduced discrepancy of surface electrical resistance of the two sides of the MWNT/PUU nanocomposite film was found due to the homogeneous dispersion of MWNT. The microwave absorption and tensile strength of MWNT/PUU were also improved by the well dispersion of MWNT in PUU matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1096–1105, 2006  相似文献   

8.
9.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

10.
《先进技术聚合物》2018,29(6):1547-1567
Recently, it has been found that carbon nanotubes (CNTs) and graphene could prove to be the most promising carbonaceous fillers in polymers nanocomposites field because of their better structural and functional properties. Their uniform dispersion in polymer matrix leads to significant improvements in their several properties. This paper reviews the effect of nanofillers, ie, CNTs, derivatized CNTs, and graphene on the polycarbonate nanocomposite and its application in aerospace, automobile, sports, electronic sectors, and various industries. The comparative analysis of carbon‐based fillers on the different properties of polycarbonate nanocomposites is also included.  相似文献   

11.
Poly(urea urethane) (PUU) with a poly(dimethylsiloxane) soft segment was synthesized. Different types of conductive fillers—carbon nanotube (CNT), silver‐coated carbon nanotube (CNT–Ag), and nickel‐coated carbon nanotube (CNT–Ni)—were blended with PUU to form partially conductive polymer composites. The results showed that highly conductive metals could improve the conductivity of CNTs significantly. When the filler contents were 3, 4, and 5 parts per hundred parts of resin (phr), the PUU/CNT composites possessed electromagnetic interference shielding effectiveness (SE) at 8.5, 28.4, and 26.0 dB as the electromagnetic wave frequencies were 12.3, 16.2, and 15.9 GHz, respectively. SE of the composites that contained CNT–Ni and CNT–Ag increased with the filler loading. At the same modified‐CNT loading, the CNT–Ni‐filled composites had a higher SE than those filled with CNT–Ag. Tensile stresses ranged from 5.7 to 15.6 MPa (a 177.3% increase) when the CNT concentration reached 8 phr. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 345–358, 2005  相似文献   

12.
张扬  温变英 《高分子科学》2015,33(6):899-907
A novel asymmetric Ni/PVC film has been developed by solution casting method. The structure, electrical conductivity, electromagnetic interference(EMI) shielding, and impact resistance were investigated. The results showed that the Ni particles were asymmetrically distributed along the thickness direction in the film. The top surface resistivity increased with film thickness, while the bottom surface exhibited the different trend. EMI shielding effectiveness(SE) depended on formation of closed packed conductive Ni network, which was influenced by both Ni content and film thickness. A linear relationship was observed between EMI SE and film thickness. The films with lower Ni content showed the faster increasing rate of EMI SE with film thickness. Some of the films show appreciably high EMI SE( 40 d B), indicating the promising application in EMI shielding field. Moreover, the films exhibit different impact performance under different impacting directions. All the experimental facts demonstrate that the asymmetric structure endows the film achieving high-performance EMI shielding function.  相似文献   

13.
To improve the efficiency in shielding electromagnetic interference in electronic devices, multi-walled carbon nanotubes were used, due to their excellent electric and magnetic properties at high aspect ratios, and were added to an epoxy matrix. Fluorination was carried out to achieve excellent dispersion and adhesion of the additives in the epoxy matrix. The improved dispersion was confirmed by UV spectra. The permittivity and permeability were also significantly improved based on the effects of the additives and the fluorination treatment. The efficiency of shielding electromagnetic interference increased up to 28 dB. This improved efficiency of shielding electromagnetic interference may be caused by a well-organized conductive network of additives in epoxy.  相似文献   

14.
A novel chemical method based on ultrasonic assisted polyol synthesis for the fabrication of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes (MWCNTs) was developed. The simple and green method took only about 10 min at ambient temperature. The structure and chemical nature of the resulting Pt/MWCNT composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDS). The results showed that the prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt nanoparticles was about 2.8 nm. Electrochemical properties of Pt/MWCNT electrode for methanol oxidation were examined by cyclic voltammetry (CV) and excellent electrocatalytic activities could be observed. The possible formation mechanism of Pt/MWCNTs was also discussed.  相似文献   

15.
The non-isothermal crystallization behaviors of multi-walled carbon nanotubes (MWNTs)/polyamide 6 (PA6) composites were investigated by differential scanning calorimetry (DSC). Three methods, namely, Avrami, Ozawa and Mo, were carried out to analyze the non-isothermal crystallization data. The results showed that the MWNTs in PA6 acted as effective nucleation agents. However the crystallization rate of composites obtained was lower than that of the neat PA6. It is indicated that the presence of MWNTs influenced the mechanism of nucleation and the growth of PA6 crystallites.  相似文献   

16.
Herein we report an easy and efficient approach to prepare lightweight porous polyimide (PI)/reduced graphene oxide (RGO) composite films. First, porous poly (amic acid) (PAA)/graphene oxide (GO) composite films were prepared via non‐solvent induced phase separation (NIPS) process. Afterwards PAA was converted into PI through thermal imidization and simultaneously GO dispersed in PAA matrix was in situ thermally reduced to RGO. The GO undergoing the same thermal treatment process as thermal imidization was characterized with thermogravimetric analysis, Raman spectra, X‐ray photoelectron spectroscopy and X‐ray diffraction to demonstrate that GO was in situ reduced during thermal imidization process. The resultant porous PI/RGO composite film (500‐µm thickness), which was prepared from pristine PAA/GO composite with 8 wt% GO, exhibited effective electrical conductivity of 0.015 S m?1 and excellent specific shielding efficiency value of 693 dB cm2 g?1. In addition, the thermal stability of the porous PI/RGO composite films was also dramatically enhanced. Compared with that of porous PI film, the 5% weight loss temperature of the composite film mentioned above was improved from 525°C to 538°C. Moreover, tensile test showed that the composite film mentioned above possessed a tensile strength of 6.97 MPa and Young's modulus of 545 MPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A hybrid approach has been adopted by using a combination of colloidal graphite (CG) as a conducting filler, 5‐lithium sulfoisophthalic (LiSIPA) acid as a dopant, and polyaniline (PANI) as a matrix to prepare LiSIPA doped PANI–CG composites. The thermal stability (~300°C) and electrical conductivity (67.4 S/cm at 17.4% CG content) have been improved significantly as compared to PANI doped with conventional inorganic dopants like HCl or H2SO4 (130–150°C). The maximum shielding effectiveness value was found to be ?39.7 dB. X‐ray diffraction and infrared spectroscopy showed a systematic shifting of the characteristic peaks and bands with increase in the amount of CG, which indicates significant interaction exists between CG and PANI. The UV–Vis spectra showed the characteristic bands of PANI, with a shift to shorter wavelength with increase in the CG content. The interaction mechanism between doped PANI and CG in the resultant composites has been proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
碳纳米管修饰电极对对苯二酚和邻苯二酚的电催化研究   总被引:11,自引:0,他引:11  
用循环伏安法(CV)和交流阻抗技术(EIS),研究了对苯二酚(HQ)和邻苯二酚(CC)在多壁碳纳米管(MWCNT)修饰电极上的电化学行为。分析和比较了修饰电极对这两种酚的催化反应。修饰电极对两种多酚类化合物都有强烈的电催化作用,电极过程受扩散控制。在pH 5.8的HAc-NaAc缓冲溶液中,HQ在修饰电极上的线性范围是10×10-4~1.0×10-2mol/L,检出限为1.0×10-5mol/L;在pH 4.4的HAc-NaAc缓冲溶液中,CC在修饰电极上的线性范围是4.0×10-5~2.0×10-3mol/L,检出限为8.0×10-6mol/L。该修饰电极可对HQ和CC同时进行测定。  相似文献   

19.
Multi-walled carbon nanotube (MWCNT)/poly(glycerol–sebacate–citrate) (PGSC) elastomer composite were prepared and their morphologies, compositions, glass transition temperatures, mechanical properties, water absorption, biodegradation and cytotoxicity were investigated. Results showed that the chemical structures of PGSC elastomers were hardly influenced by the MWCNT loadings, and physical adsorption was thought as the main interaction between the MWCNTs and PGSC matrixes. When the MWCNT loading was 3 wt%, MWCNTs displayed a homogenous dispersion in the matrixes, and the composite's strength and modulus respectively reached 4.4 MPa and 9.2 MPa, increasing by 62.96% and 33.33% than that of pure PGSC matrixes. The degradation rates of the composites tended to decrease with the increase of MWCNT loadings in simulated body fluid (SBF) solution. The composites presented no cytotoxicity especially when the MWCNT loadings were above 1 wt%. We expect the composites can be used as degradable bio-coatings and tissue engineering scaffolds in future.  相似文献   

20.
<正>Polypyrrole(PPy) shows a favorable application in the electromagnetic interference(EMI) shielding due to its good electrical conductivity and outstanding air stability.Conducting PPy films with high conductivity and good adhesion were successfully polymerized on the surface of insulating epoxy resin substrates using chemical polymerization.The factors affecting the properties of PPy films,such as the surface morphology,adhesion between PPy film and substrate,electrical conductivity,EMI shielding effectiveness(SE),were investigated.The adhesion was improved significantly through a three-step surface pretreatment of epoxy resin substrates including removing impurities,roughening,and surface modification with silane coupling agent.An enhancement in the conductivity of PPy films of about one order of magnitude was achieved by adding dopant in FeCl_3 solution.The higher the conductivity,the better the shielding effectiveness.Taking sodium p-toluenesulfonate doped PPy film as example,EMI SE was in the practically useful range of about 30 dB over a wide frequency range from 30 MHz to 1500 MHz.The PPy film samples were characterized by scanning electron microscopy (SEM),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS) and the flange coaxial transmission device.The fourpoint probe method was used to measure conductivity of PPy films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号