首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on solution properties of lightly grafted copolymers composed of polystyrene (PS) backbone (degree of polymerization of PS backbone, Nb=95) and variable length of poly(tert-butyl methacrylate) P(tBuMA) side chains (degree of polymerization of side chains, Nsc=14-222) at fixed number of grafting sites n = 11 and polydispersity index (Mw/Mn) ranging from 1.05 to 2.63. Synthesis of these graft copolymers is based on a novel synthetic route [Gromadzki D, Makuška R, Netopilík M, Holler P, Lokaj J, Janata M, et al. Eur Polym J 2008;44:59-71] involving two independent controlled/“living” polymerization mechanisms, namely nitroxide-mediated radical polymerization (NMP) for the synthesis of the backbone and photoinduced “grafting from” iniferter process for building of P(tBuMA) branches. The viscosity-related contraction factors g<1 confirmed high degree of branching of the studied graft copolymers. Dilute solutions of graft copolymers in non-selective solvent (THF), examined by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and viscometry, revealed a transition from comb-like conformation through wormlike-star to a microgel architecture under increasing number of monomeric units in side chains. These data were further supported by the structure factors Rη/Rh and Rg/Rh obtained by independent measurements and extrapolated to infinite dilution. Persistence lengths of the samples exhibiting comb-like topology were larger compared to linear polystyrene backbone and P(tBuMA) side chains in THF suggesting stiffening of the main chain with increasing size of the attached side chains. Unimolecular micelles were detected by DLS and SAXS in solvent selective for grafts, tert-amyl alcohol.  相似文献   

2.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

3.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

4.
ABC-type miktoarm star polymers, poly(ethylene oxide)-block-polystyrene-block-poly (ε-caprolactone)s (PEO-b-PS-b-PCL) were synthesized via combination of “click” chemistry, atom-transfer radical polymerization (ATRP) and ring opening polymerization (ROP). Azide ended PEO arms, PEO-N3, and a trifunctional molecule, propargyl 2-hydroxylmethyl-2-(α-bromoisobutyraloxymethyl)-propionate (PHBP), were prepared first, respectively. A “click” reaction of PEO-N3 and PHBP generated a PEO macroinitiator, PEO-(Br)(OH) with two functionalities, one is hydroxyl group and the other is α-bromoisobutyraloxyl group. Consecutive ATRP of styrene (St) and ROP of ε-caprolactone (ε-CL) from the PEO macroinitiator produced the PEO-b-PS-b-PCL miktoarm stars. All the structures of the polymers were determined.  相似文献   

5.
Reported here is a novel approach toward efficient preparation of well‐defined cylindrical brushes polymer (CBPs) with both hydrophobic and hydrophilic side chains connected to the linear backbone by interfacial “click” chemistry in two immiscible solvents. The CBPs with high grafting density of more than 95% and molecular polydispersity (Mw/Mn) less than 1.12 can be readily synthesized using present approach. On contrary, the CBPs synthesized from the “click” reaction in a single solvent in homogenous state have low grafting density of less than 55% and molecular polydispersity (Mw/Mn) more than 1.78. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Acid-degradable molecular brushes with polycarbonate backbone and densely grafted side chains (∼1.9 SCs per backbone repeating unit) were synthesized for the first time using the grafting-onto method. Extremely efficient copper-catalyzed azide-alkyne cycloaddition click reactions between the polycarbonate backbone containing two pendant azido groups per backbone unit and alkynyl-terminated poly (methyl acrylate) (ay-PMA72, average degree of polymerization DP = 72) SCs were demonstrated to finish in 10 min with a quantitative conversion of the azido groups. Similar grafting efficiencies were also achieved when using alkynyl-terminated polystyrene (ay-PS), poly(ethylene oxide) (ay-PEO), and poly (t-butyl acrylate)-b-polystyrene (ay-PtBA-b-PS) to successfully prepare molecular brushes with high grafting density (>1.8 SCs per backbone repeating unit). Under acidic condition, the polycarbonate backbones were completely degradable and the final degraded product of the molecular brushes was a linear polymer chain with molecular weight two times of the SCs. When a mixture of hydrophobic ay-PS and hydrophilic ay-PEO chains was used, amphiphilic heterobrushes PC-g-(PS-co-PEO) were synthesized, which could self-assemble into micelles or vesicles in selective solvents, depending on the ratio of the two SCs in the brush. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 239–248  相似文献   

7.
The direct polymerization of deprotonated acidic monomers in aqueous solutions was achieved via surface‐confined atom transfer radical polymerization (SC‐ATRP) to produce surface‐tethered polyelectrolyte brushes. Layers of poly(itaconic acid), poly(methacrylic acid), and sodium poly(styrene sulfonate) were grown by SC‐ATRP from self‐assembled initiator monolayers of [BrC(CH3)2COO(CH2)11S]2 on gold substrates. The polymer layers were characterized with variable‐angle ellipsometry and external‐reflection Fourier transform infrared spectroscopy. Without intervention, atom transfer radical polymerization catalysts were deactivated by complexation with the deprotonated acidic monomers, disproportionation, and dissociation during the polymerization of these monomers in water; the result was the cessation of polymer growth. The addition of an alkali salt to the reaction media suppressed catalyst deactivation, allowing polymer layers to increase in thickness linearly for longer periods of time with respect to salt‐free conditions. This result suggested an improved degree of polymerization control. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 566–575, 2007  相似文献   

8.
Polymeric microspheres were prepared from a Merrifield resin via nitroxide‐mediated radical polymerization. Polystyrene, poly(acetoxystyrene), and poly[styrene‐b‐(methyl methacrylate‐co‐styrene)], poly(acetoxystyrene‐b‐styrene), and poly(styrene‐co‐2‐hydroxyethyl methacrylate) copolymers were demonstrated to graft onto 2,2,6,6‐tetramethyl‐1‐piperidinyloxy nitroxide bound Merrifield resins. The polymerization control was enhanced both on the surface and in solution by the addition of sacrificial nitroxide. The significant increase in the particle diameter (more than a fivefold volume increase for polystyrene brushes) showed that polymer growth was not only on the surface but also within the particles, and this diameter increase could be adjusted through changes in the molecular weight of the polymers. The microspheres were characterized by elemental analysis, IR spectroscopy, particle size analysis, and optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2145–2154, 2005  相似文献   

9.
Poly(octadecyl acrylate)-grafted silicas were prepared by surface-initiated atom transfer radical polymerization (ATRP). Initially, undecyl ester and allyl ester-based ATRP initiators were synthesized and then immobilized on silica. The surface-initiated ATRP of octadecyl acrylate was carried out from the initiator-grafted silicas using copper(I) bromide and N,N,N,N′,N′′-pentamethyldiethylenetriamine as catalyst precursors to produce poly(octadecyl acrylate)-grafted silicas, Sil-C11-ODAn (obtained from undecyl ester) and Sil-C3-ODAn (originated from allyl ester), respectively. Both Sil-C11-ODAn and Sil-C3-ODAn were characterized by DRIFT, suspension-state 1H NMR, solid-state 13C CP/MAS NMR spectroscopies, thermogravimetric analysis (TGA), elemental analysis and differential scanning calorimetry (DSC) measurements. Suspension-state 1H NMR, solid-state 13C CP/MAS NMR and DSC analyses suggest that Sil-C11-ODAn demonstrated more ordered structure than Sil-C3-ODAn. In this paper, it is also described that for ordering of the polymer phase is accompanied by the selectivity increase for the separation of poly cyclic aromatic hydrocarbons (PAHs) in RP-HPLC.  相似文献   

10.
Well‐defined, high‐density poly(2‐(2‐methoxyethoxy)ethyl methacrylate) [poly(MEO2MA)] brushes were fabricated through a reliable strategy by the combination of self‐assembly of a monolayer of 3‐aminopropyltrimethoxy silane on silicon surface to immobilize 4‐cyano‐4‐(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid chain transfer agent and reversible addition‐fragmentation chain transfer‐mediated polymerization of MEO2MA. The whole fabrication process of the poly(MEO2MA) brushes was followed by water contact angle, grazing angle‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and atomic force microscopy. Characterization of the poly(MEO2MA) brushes, such as molecular weight and thickness determination, were measured by gel permeation chromatography and ellipsometry, and the grafting density was estimated. The temperature‐responsive property of the poly(MEO2MA) brushes was further investigated and the result verified the brush‐to‐mushroom phase transition of the poly(MEO2MA) chains from low to high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
In this paper, two types of three-arm star mesogen-jacketed crystal polymers (MJLCPs) with different core (that is hard core and soft core) were synthesized by 2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene (MPCS), which was initiated by two different trifunctional initiators 1,3,5-(2′-bromo-2′-methylpropionato)benzene (Ia) and 1,1,1-tris(2-bromoisobutyryloxymethyl)propane (Ib), respectively. Characterization of these polymers by 1H NMR and GPC clearly supported the formation of a three-arm star-shaped PMPCS. The resulting three-arm star PMPCS possessed narrow molecular weight distribution, and its molecular weight (Mn,NMR) agreed well with the theoretical value, which reveals the quantitative initiation efficiency. The liquid-crystalline behaviors of the two types of three-arm star polymer with different structure were also investigated by differential scanning calorimeter (DSC) and polarized optical microscope (POM). We found that the liquid-crystalline behavior was incorrelated with structure of core but correlated with the length of three-arm star polymer arm. Only each arm of the three-arm star-shaped polymers with a Mn,GPC beyond 0.90 × 104 g/mol could form a liquid crystalline phase,which was found to be stable up to the decomposition temperature of these tri-arm MJLCPs.  相似文献   

12.
13.
An easy and novel approach to the synthesis of functionalized nanostructured polymeric particles is reported. The surfactant‐free emulsion polymerization of methyl methacrylate in the presence of the crosslinking reagent 2‐ethyl‐2‐(hydroxy methyl)‐1,3‐propanediol trimethacrylate was used to in situ crosslink colloid micelles to produce stable, crosslinked polymeric particles (diameter size ~ 100–300 nm). A functionalized methacrylate monomer, 2‐methacryloxyethyl‐2′‐bromoisobutyrate, containing a dormant atom transfer radical polymerization (ATRP) living free‐radical initiator, which is termed an inimer (initiator/monomer), was added to the solution during the polymerization to functionalize the surface of the particles with ATRP initiator groups. The surface‐initiated ATRP of different monomers was then carried out to produce core–shell‐type polymeric nanostructures. This versatile technique can be easily employed for the design of a wide variety of polymeric shells surrounding a crosslinked core while keeping good control over the sizes of the nanostructures. The particles were characterized with scanning electron microscopy, transmission electron microscopy, optical microscopy, dynamic light scattering, and Raman spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1575–1584, 2007  相似文献   

14.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

15.
Poly(methyl methacrylate)‐b‐polystyrene (PMMA‐b‐PS) containing a benzo‐15‐crown‐5 unit at the junction point was prepared by combining atom transfer radical polymerization and nitroxide‐mediated radical polymerization. For this purpose, 6,7,9,10,12,13,15,16‐octahydro‐5,8,11,14,17‐pentaoxa‐benzocyclopentadecene‐2‐carboxylic acid 3‐(2‐bromo‐2‐methyl‐propionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yloxy)‐ethoxycarbonyl]‐propyl ester ( 3 ) was synthesized and used as an initiator in atom transfer radical polymerization of methyl methacrylate in the presence of CuCl and pentamethyldiethylenetriamine at 60°C. A linear behavior was observed in both plots of ln([M]0/[M]) versus time and Mn,GPC versus conversion indicating that the polymerization proceeded in a controlled/living manner. Thus obtained PMMA precursor was used as a macroinitiator in nitroxide‐mediated radical polymerization of styrene (St) at 125°C to give well‐defined PMMA‐b‐PS with crown ether per chain. Kinetic data were also obtained for copolymerization. Moreover, potassium picrate (K+ picrate) complexation of 3 and PMMA‐b‐PS copolymer was studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3242–3249, 2006  相似文献   

16.
In this thesis, we studied the convenient synthesis and characterizations of thermo‐responsive materials with double response. To achieve these, AB‐type diblock copolymers comprising of poly(N‐isopropylacrylamide) (NIPAAm) segment and poly(NIPAAm‐co‐(N‐(hydroxymethyl)acrylamide) (HMAAm)) one were designed. That was synthesized in one‐pot using an atom transfer radical polymerization (ATRP) technique. Poly(NIPAAm‐co‐HMAAm)s synthesized separately showed sensitive thermo‐response and the cloud point was completely tunable by the composition of HMAAm. As expected, the block copolymers exhibited double thermo‐responsive profiles in aqueous solution. The responsive behavior was discussed by precise trace by 1H NMR and turbidity measurements. From these results, we could confirm almost independent dehydration of each segment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6142–6150, 2008  相似文献   

17.
Vinyl acetate and vinyl chloroacetate were copolymerized in the presence of a bis(trifluoro‐2,4‐pentanedionato)cobalt(II) complex and 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) at 30 °C, forming a cobalt‐capped poly(vinyl acetate‐co‐vinyl chloroacetate). The addition of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy after a certain degree of copolymerization was reached afforded 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(vinyl acetate‐co‐vinyl chloroacetate) (PVOAc–MI; number‐average molecular weight = 31,000, weight‐average molecular weight/number‐average molecular weight = 1.24). A 1H NMR study of the resulting PVOAc–MI revealed quantitative terminal 2,2,6,6‐tetramethyl‐1‐piperidinyloxy functionality and the presence of 5.5 mol % vinyl chloroacetate in the copolymer. The atom transfer radical polymerization (ATRP) of styrene (St) was studied with ethyl chloroacetate as a model initiator and five different Cu‐based catalysts. Catalysts with bis(2‐pyridylmethyl)octadecylamine (BPMODA) or tris(2‐pyridylmethyl)amine (TPMA) ligands provided the highest initiation efficiency and best control over the polymerization of St. The grafting‐from ATRP of St from PVOAc–MI catalyzed by copper complexes with BPMODA or TPMA ligands provided poly(vinyl acetate)‐graft‐polystyrene copolymers with relatively high polydispersity (>1.5) because of intermolecular coupling between growing polystyrene (PSt) grafts. After the hydrolysis of the graft copolymers, the cleaved PSt side chains had a monomodal molecular weight distribution with some tailing toward the lower number‐average molecular weight region because of termination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 447–459, 2007  相似文献   

18.
2‐Phenyl‐2‐[(2,2,6,6‐tetramethylpiperidino)oxy] ethyl 2‐bromopropanoate was successfully used as an initiator in consecutive living radical polymerization routes, such as metal‐catalyzed living radical polymerization and nitroxide‐mediated free‐radical polymerization, to produce various types of acrylonitrile‐containing polymers, such as styrene–acrylonitrile, polystyrene‐b‐styrene–acrylonitrile, polystyrene‐b‐poly(n‐butyl acrylate)‐b‐polyacrylonitrile, and polystyrene‐b‐polyacrylonitrile. The kinetic data were obtained for the metal‐catalyzed living radical polymerization of styrene–acrylonitrile. All the obtained polymers were characterized with 1H NMR, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3374–3381, 2006  相似文献   

19.
A novel ω-azido-functionalized RAFT reagent, O-(2-azido-ethyl) S-benzyl dithiocarbonate (AEBDC), was synthesized and subsequently employed to mediate the reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc) to prepare end-functionalized polymers. The polymerization results showed that the RAFT polymerizations of VAc could be well controlled using AEBDC as the RAFT agent. Number-average molecular weights (Mn GPC) increased linearly with monomer conversion, and molecular weight distributions were relatively narrow. 1H NMR spectrum of the poly(vinyl acetate) (PVAc) confirmed the existence of functional azido group at the end of the polymers chains. The ω-azido-terminated polymers were coupled by “click” chemistry with a fluorescent alkyne, 7-propinyloxy coumarin, to prepare fluorescent PVAc. The fluorescence properties of the PVAc homopolymers before and after coupling with 7-propinyloxy coumarin in CH2Cl2 solution were investigated.  相似文献   

20.
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new ‐shaped amphiphilic block copolymer, (PMMA)2–PEO–(PS)2–PEO–(PMMA)2 [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso‐2,3‐dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)2–PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm‐4 amphiphilic block copolymer, (HO–PEO)2–PS2, was esterified with 2,2‐dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the ‐shaped amphiphilic block copolymer. The polymers were characterized with gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 147–156, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号