首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymer nanocomposites were prepared from poly(oxyethylene) PEO as the matrix and high aspect ratio cellulose whiskers as the reinforcing phase. Nanocomposite films were obtained either by extrusion or by casting/evaporation process. Resulting films were characterized using microscopies, differential scanning calorimetry, thermogravimetry and mechanical and rheological analyses. A thermal stabilization of the modulus of the cast/evaporated nanocomposite films for temperatures higher than the PEO melting temperature was reported. This behavior was ascribed to the formation of a rigid cellulosic network within the matrix. The rheological characterization showed that nanocomposite films have the typical behavior of solid materials. For extruded films, the reinforcing effect of whiskers is dramatically reduced, suggesting the absence of a strong mechanical network or at least, the presence of a weak whiskers percolating network. Rheological, mechanical and microscopy studies were involved in order to explain this behavior.  相似文献   

2.
Cellulose nanofibres (CNF) with diameter 10–60 nm were isolated from raw banana fibres by steam explosion process. These CNF were used as reinforcing elements in natural rubber (NR) latex along with cross linking agents to prepare nanocomposite films. The effect of CNF loading on the mechanical and dynamic mechanical (DMA) properties of NR/CNF nanocomposite was studied. The morphological, crystallographic and spectroscopic changes were also analyzed. Significant improvement of Young’s modulus and tensile strength was observed as a result of addition of CNF to the rubber matrix especially at higher CNF loading. DMA showed a change in the storage modulus of the rubber matrix upon addition of CNF which proves the reinforcing effect of CNF in the NR latex. A mechanism is suggested for the introduction of the Zn–cellulose complex and its three dimensional network as a result of the reaction between the cellulose and the Zinc metal which is originated during the composite formation.  相似文献   

3.
Bio‐based nanocomposite films were successfully developed using cellulose whiskers as the reinforcing phase and chitosan as the matrix. Cellulose whiskers, with the lengths of 400 ± 92 nm and diameters of 24 ± 7.5 nm on average, were prepared by hydrolyzing cotton linter with sulfuric acid solution. The effects of whisker content on the structure, morphology and properties of the nanocomposite films were characterized by SEM, XRD, FTIR, UV‐vis spectroscopy, DMA, TG, tensile testing, and swelling experiment. The results indicated that the nanocomposites exhibited good miscibility, and strong interactions occurred between the whiskers and the matrix. With increasing whisker content from 0 to 15–20 wt %, the tensile strength of the composite films in dry and wet states increased from 85 to 120 MPa and 9.9 to 17.3 MPa, respectively. Furthermore, the nanocomposite films displayed excellent thermal stability and water resistance with the incorporation of cellulose whiskers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1069–1077, 2009  相似文献   

4.
The chemical composition and morphology of Syngonanthus nitens (Capim Dourado) fibers were investigated. An unusual low lignin content and high holocellulose content have been observed. High aspect ratio cellulose whiskers were prepared from these lignocellulosic fibers by an acid hydrolysis treatment. The average diameter and length were 4.5 nm and 300 nm, respectively, giving rise to an aspect ratio around 67. Natural Rubber nanocomposite films reinforced with cellulose whiskers extracted from capim dourado were prepared by film casting. The mechanical properties of the ensuing nanocomposite films were investigated in both the linear and the non-linear range using dynamical mechanical analysis and tensile tests, respectively. The reinforcing effect observed above the glass transition temperature of the matrix was higher than the one observed for other polysaccharide nanocrystals and cellulose whiskers extracted from other sources.  相似文献   

5.
《先进技术聚合物》2018,29(5):1507-1517
Water‐induced mechanically adaptive rubber nanocomposites were prepared by mixing bacterial cellulose whiskers (BCWs) suspension with styrene‐butadiene rubber (SBR) latex, followed by evaporation method. The structure, morphology, dynamic mechanical properties, water stimuli‐responsive behavior, and biodegradability of SBR/BCWs nanocomposite films were investigated. The results showed that the hydrophilic whiskers had a significant reinforcement effect on the storage modulus of SBR matrix, which originated from the formation of a rigid three‐dimensional filler network within matrix by strong hydrogen bonding between whiskers. The SBR/BCWs nanocomposites showed pronounced water stimuli‐responsive behavior compared with neat SBR. The storage modulus of SBR/BCWs nanocomposite could be decreased by 99.2% after equilibrium water swelling. This remarkable water‐triggered modulus change is attributed to the disentanglement of BCWs network via competitive hydrogen bonding with water.  相似文献   

6.
Vulcanization is a vital process in rubber processing, it endows rubber with valuable physical and mechanical properties, making rubber a widely used engineering material. In addition to vulcanization agent, reinforcing fillers play a non-ignorable influence on the vulcanization of rubber nanocomposites. Herein, the effects of cellulose nanocrystals (CNCs) on the vulcanization of natural rubber (NR)/CNCs nanocomposite was studied. It was found that even though the addition of CNCs can effectively improve the dispersion of ZnO in NR matrix, the vulcanization of NR was inhibited. This may be attributed to the CNCs' adsorption of vulcanizing agents (DM, ZnO) and the acidic chemical environment on the surface of CNCs. In order to improve the vulcanization properties of NR/CNCs nanocomposite, tetramethyldithiochloram (TMTD) and triethanolamine (TEOA) were used as a combination accelerator and curing activator, respectively, and polyethylene glycol (PEG) was introduced to screen hydroxyl groups on the surface of CNCs to prohibit the CNCs' adsorption of vulcanizing agents. The results indicate that TMTD and TEOA effectively improved the vulcanization rate of NR/CNCs nanocomposite and increased the crosslink density by an order of magnitude. Subsequently, the tensile strength, tear strength, and so forth. of NR/CNCs nanocomposite were significantly improved. However, PEG hardly help to improve the vulcanization properties of NR/CNCs nanocomposite. In addition, the control samples without CNCs were prepared and characterized, the comparation between NR and NR/CNCs nanocomposite shows that the synergistic effect of crosslink density and CNCs' reinforcement more effectively improve mechanical properties of NR. This work not only elucidates the inhibiting mechanisms of CNCs on the vulcanization of NR, but also provides practical strategies for improving the vulcanization and properties of NR/CNCs nanocomposite. It may accelerate the application of CNCs as rubber reinforcing filler.  相似文献   

7.
Starch nanocrystals obtained from acid hydrolysis of waxy maize starch granules consist in crystalline nanoplatelets about 6–8 nm thick with a length of 20–40 nm and a width of 15–30 nm. New nanocomposite materials, i.e. natural rubber (NR) filled with waxy maize starch nanocrystals were processed by casting. Dynamic mechanical analysis has shown that starch nanocrystals were a good reinforcing agent for NR at temperatures higher than the glass transition temperature of NR. Tensile tests have shown that until a weight fraction of 20 wt%, this new filler presented the advantage to reinforce natural rubber without decreasing significantly the strain at break of the material. These properties may be due to both the morphological nature of starch nanocrystals, and the formation of a percolating starch nanocrystals network within the NR matrix, resulting from hydrogen bonding forces between starch aggregates.  相似文献   

8.
The effect of carbon nanoparticles (nanofibers, nanocones/nanodiscs) introduced into a polypyromellitimide matrix on the stability of the mechanical and thermal characteristics of the resulting nanocomposite film materials in the course of hydrolysis in aqueous alkali was studied. The nanocomposite films are less resistant to hydrolysis than the unfilled films of the matrix polyimide. The decreased packing density in the nanocomposite material is considered to be the major factor responsible for the observed effects. A certain excess void volume in the nanocomposite appears owing to insufficient compatibility of the matrix polyimide with the nanoparticles, manifested in the course of the material preparation.  相似文献   

9.
Nanocomposite materials were prepared from copolymers of polyvinyl alcohol and polyvinyl acetate and a colloidal aqueous suspension of cellulose whiskers prepared from cotton linter. The degree of hydrolysis of the matrix was varied in order to vary the hydrophilic character of the polymer matrix and then the degree of interaction between the filler and the matrix. Nanocomposite films were conditioned at various moisture contents, and the dynamic mechanical and thermal properties were characterized using dynamic mechanical analysis and differential scanning calorimetry, respectively. Tensile tests were performed at room temperature to estimate mechanical properties of the films in the non linear range. All the results show that stronger filler/matrix interactions occur for fully hydrolyzed PVA compared to partially hydrolyzed samples. For moist samples, a water accumulation at the interface was evidenced. The reinforcing effect was found to be all the higher as the degree of hydrolysis of the matrix was high.  相似文献   

10.
UV‐curing technique was employed in this study to prepare polyester‐acrylate nanocomposite films with silane‐grafted silica nanoparticles. Methacryloxypropyl trimethoxysilane was grafted to the surfaces of silica nanoparticles to improve dispersion of silica nanoparticles as well as interfacial adhesion between the resin matrix and silica nanoparticles. The silane‐grafting was confirmed by nuclear magnetic resonance and infrared spectroscopy. The effects of the silane‐grafting on the mechanical and optical properties as well as UV‐curing behavior of the nanocomposite films were investigated. The tensile strength, transmittance, UV‐curing rate, and final chemical conversion of the nanocomposite films were increased by use of the grafted silica nanoparticles as compared to the use of neat silica nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.  相似文献   

12.
Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised to produce nanocomposite thin films of gold nanoparticles and vanadium dioxide from vanadyl acetylacetonate and auric acid. The addition of tetraoctyl ammonium bromide (TOAB) to the precursor solution gave control of the size and distribution of gold nanoparticles in the vanadium oxide matrix. These reactions led to vanadium dioxide films with reduced crystallite sizes and enhanced thermochromic properties. The films were analysed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined. This hybrid method shows great potential for the production of nanocomposite thin films with good physical properties.  相似文献   

13.
The optical properties of silver nanoparticles embedded in poly(methylmethacrylate) (PMMA) was investigated as well as the influence of silver nanoparticles on the thermal properties of polymer matrix. The average size and particle size distribution of silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were optically characterized using UV-Vis and FTIR spectroscopy. Thermal stability of polymer matrix was improved upon incorporation of small amount of silver nanoparticles. Also, silver nanoparticles have pronounced effect on thermo-oxidative stability of PMMA matrix. The glass transition temperatures of nanocomposites are lower compared to the pure polymer.  相似文献   

14.
Surface modified silver nanoparticles dispersed in chloroform were encapsulated in poly(methylmethacrylate) (PMMA) by in-situ radical polymerization of methyl methacrylate initiated by 2,2′-azobisisobutyronitrile. The particle size distribution of colloidal silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were characterized using UV-vis spectroscopy, 1H NMR spectroscopy and gel permeation chromatography. Effective medium Maxwell-Garnett theory was used in order to explain optical properties of nanocomposite films taking into account inhomogeneous spatial distribution of silver nanoparticles in PMMA matrix. The influence of the silver nanoparticles on the thermal properties of the PMMA matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. Thermo-oxidative stability of the PMMA in the presence of low content of inorganic phase is significantly improved. The glass transition temperatures of nanocomposites are slightly lower compared to the pure polymer.  相似文献   

15.
Stable film-forming nanocomposite particles with diameters ranging from 120 to 300 nm, based on polybutylmethacrylate (PBMA) and cellulose whiskers in water dispersions, were successfully synthesized in one step through mini-emulsion polymerization. The nanocomposite dispersion with a solid content of 25 wt.% and up to 5 wt.% of nanofiller loading was prepared by in situ polymerization, in the presence of the whiskers using dodecylpyridinium chloride (DPC), as a cationic surfactant, and 2,2-azobis(isobutyronitrile) (AIBN), as initiator. The electrostatic interaction between the positively charged droplets and negatively charged whiskers ensured the anchoring of the nanofiller around the polymer particles. The ensuing dispersions were characterized by Dynamic Light Scattering (DLS), ζ-Potential Measurements, and Field-Emission Scanning Electron Microscopy (FE-SEM). After the film formation process, the nanocomposite film exhibits a high transparency, denoting the good dispersion of the whiskers throughout the matrix.  相似文献   

16.
Eco-friendly all cellulose composites were developed using cellulose as matrix and nanocomposite (in situ generated copper nanoparticles modified Napier Grass Fibers (NGFs)) as fillers for the antibacterial applications. The content of the nanocomposite filler was increased from 1?wt.% to 5?wt.% in the cellulose matrix. All these composites were characterized by Scanning Electron Microscopy (SEM), Tensile, Thermo Gravimetric Analysis (TGA), and antibacterial tests. SEM-EDX analysis revealed the in situ generation of copper nanoparticles on the surface of the films. Further, all cellulose composites showed good thermal stability. A minimum of 30% increase in char residue was observed in all cellulose nanocomposites compared to matrix. Antibacterial analysis indicated an excellent clear zone formation against both Gram Negative (Escherichia coli) and Gram Positive (Staphylococcus) bacteria. Hence, all these cellulose nanocomposite films can be considered as antibacterial packaging and dressing materials in medical field.  相似文献   

17.
A new poly(sulfone ether imide) was prepared, and related nanocomposites were produced through introduction of sepiolite nanoparticles into the matrix of polymer. Inherent viscosity, thermal and mechanical features of pristine poly(sulfone ether imide), and nanocomposite samples were evaluated and compared. The crystallinity was also investigated. Dispersion and distribution behaviors of nanocomposite samples and cross‐sectional morphology of nanocomposite films were also studied. Also, the optimized amounts of sepiolite nanoparticles in the matrix of polymer were determined by microscopic techniques (scanning electron microscope and transmission electron microscope). By introduction of 3 wt% of sepiolite, superior thermal and mechanical properties were observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The solvent effect on the structure of nanocomposite films cast from chitosan solutions with AgNO3 as a precursor of silver nanoparticles was studied for the first time. The size and concentration of silver nanoparticles in the chitosan matrix can be controlled by varying the chitosan-dissolving ability of the solvent with carbonic acid.  相似文献   

19.
A film polymer nanocomposite with nanoparticles of a chalcogenide semiconductor, CdS, in a polystyrene matrix was prepared on the surface of 08kp steel. The barrier properties of the synthesized two-layer film nanomaterial in a 3 wt % aqueous NaCl solution were evaluated by measuring the electrode potential of coated and uncoated specimens and were compared with those of polymer films without nanofiller and with Fe3O4 nanoparticles. Introduction of hydrophobic CdS nanoparticles into the polymer matrix leads to significant enhancement (by ~20%, as compared to Fe3O4) of the barrier properties of the polymer nanocomposite.  相似文献   

20.
Highly refractive, heat-resistant BaTiO3 nanocomposite films were fabricated via in situ polymerization to homogeneously disperse barium titanate (BT) nanoparticles into polyimide (PI) matrix. BT nanoparticles surface-modified with O-phosphorylethanol phthalimide (PPHI) were employed to the in situ polymerization in which condensation reactions of a diphthalic anhydride and a diamine were conducted to form the prepolymer of poly(amic acid) (PAA) that was thermally imidized in the following step. The nanoparticles surface-modified were added to PAA solution at different times in the polymerization to examine the effect of PAA molecular weight on the refractive index (RI) of the nanocomposite films, which indicated that relatively low molecular weights (<10,000) of PAA formed at the point of nanoparticle addition was appropriate for enhancement of nanocomposite RI. An additional treatment of chemical imidization using acetic acid anhydride and pyridine, which was followed by the thermal imidization, was performed to examine the effect of polyimide structure on RI of nanocomposite films. The RI of nanocomposite films with excellent thermal stability could be successfully enhanced to n = 1.88 by the chemical imidization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号