首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanoporous metallic glass Pd, which was fabricated by dealloying of a glassy metallic alloy Pd(30)Ni(50)P(20), exhibited a remarkable catalytic activity for the Suzuki-coupling reaction between iodoarenes and arylboronic acids under mild conditions. Moreover, the catalyst can be reused several times without a significant loss of catalytic activity.  相似文献   

2.
The dynamics of a closed isothermal system of constant volume consisting of an ideal gaseous mixture and particles adsorbed over the biographically inhomogeneous catalyst surface, has been studied. The existence, uniqueness and asymptotic stability of the point of detailed equilibrium in each positive reaction simplex has been proved.
, , . , , .
  相似文献   

3.
Depollution processes are based on a dual approach that combines catalyst design (formulation) and reactor design. This paper illustrates the interest of this approach to get innovative depollution solutions using three examples: depollution of water containing chlorophenols at trace level by hydrogenation; destruction of nitrates by hydrogenation and oxidation; combustion of diluted VOC with no extra heat supply.  相似文献   

4.
A common type of rate equations for hydrocarbon conversions under reforming conditions has been shown, resulting from the features of the hydrocarbons and hydrogen adsorption on the Pt/Al2O3 catalyst. This has been confirmed by variations in the rate of cyclohexane conversion observed upon the introduction of methane into the reaction mixture. Methane does not react but is strongly adsorbed on the catalyst surface.
, . , , .
  相似文献   

5.
The dynamic of a closed adiabatic system of constant volume consisting of an ideal gas mixture and particles adsorbed over the biographically inhomogeneous catalyst surface, has been studied. The asymptotic stability of a point of detailed equilibrium in each reaction simplex has been proved.
, , . , .
  相似文献   

6.
A flow reactor for kinetic studies of heterogeneous catalytic reactions with simultaneous X-ray phase analysis of the catalyst is described. As an example, the correlation between the selectivity of acetylene hydrogenation and the -Pd hydride concentration in palladium catalysts is shown.
, . -Pd .
  相似文献   

7.
The oligomerization of endo-dicyclopentadiene (endo-DCPD) over a mesoporous catalyst in a continuous-flow reactor at elevated pressure was studied to produce tricyclopentadiene (TCPD) and tetracyclopentadiene (TeCPD). The mesoporous material prepared from zeolite beta (MMZ) was utilized as a catalyst. In addition, this study focused on the catalytic performance of the regenerated catalyst in comparison with the fresh catalyst. The TCPD and TeCPD were continuously produced through DCPD oligomerization over the MMZ catalyst in a fixed bed reactor. At early time-on-stream, the conversion of endo-DCPD, the yield of TCPD and TeCPD, and the isomerization selectivity of TCPD in the fixed bed reactor were comparable to those in the batch-type reactor. The yield of oligomer containing TCPD and TeCPD decreased drastically from 28.5 % at 3 h time-on-stream to 21.5 % at 12 h time-on-stream, indicating that the catalyst was significantly deactivated. The in situ calcination in air flow at 500 °C was found to be effective for the regeneration of the used MMZ catalyst.  相似文献   

8.
The dehydroalkylation of toluene with ethane to form isomeric ethyltoluenes has been carried out in a packed-bed membrane reactor under mild conditions of 350 degrees C, where it is shown that ethyltoluene yields significantly increase with increasing sweep gas flow rate and pressure.  相似文献   

9.
In this work, a new method is proposed to meet the challenge of preparing new catalysts with cascade/non-cascade switching catalytic property. Inspired from “soft” characteristics and divisional isolation function in natural biological systems, this objective was accomplished by developing a new class of hydrogels made of two unique functional layers with different temperature responses where each may self-govern coupled processes at a specific temperature. This hydrogel polymer reactor exhibited almost no catalytic activity at low-temperature range (<37 °C) as both channels of bilayer hydrogel polymer catalyst were closed. At modest temperatures (between 37 °C and 50 °C), the first step of the tandem reaction (the hydrolysis of p-nitrophenyl acetate (NPA)) showed significant reactivity that arises from the relaxing of the weak polymer complexes in the hydrogel layer. This enabled NPA the access to the acidic catalytic active center of the hydrogel. At range of higher temperatures (>50 °C), the hydrogel catalytic polymer reactor further exhibited significant efficiency towards the hydrolysis reaction of NPA as well as the reduction of the intermediate product p-nitrophenol (NP). This mainly resulted from the opening of both the weak polymer complexes and the stronger polymer complexes hydrogel layers, allowing entrance to both the acidic catalytic active center and the metal nanoparticles active center. As a result, the novel hydrogel polymer reactor could be used to control cascade/non-cascade catalysis reactions. This new protocol enables efficient control of switchable tandem reactions, inspiring for difficulty to control tandem catalytic reactors.  相似文献   

10.
Ethylene pretreatment of the (PCy3)2Cl2RuCHPh catalyst (1) prior to cross-metathesis of ethylene and cis-2-butene to form propylene in the continuous flow reactor produced a direct effect on catalyst deactivation. Similar cis-2-butene pretreatment of the same catalyst exhibited far less change in the catalyst activity. These results support the assumption that the ruthenium methylidene intermediate generated from ethylene and 1 is unstable and promotes catalyst loss while ruthenium alkylidenes, e.g. derived from 2-butene, exhibit significantly enhanced stability and sustained catalyst integrity. Continuous removal of products in the continuous flow reactor was important for separating the catalyst decay and the catalyst deactivation caused by a terminal olefin, in this case propylene.The amount of produced propylene during the 1 lifespan was determined in a series of tests using identical catalyst concentrations ([Ru] = 60 ppm) in pentadecane while varying the olefin pretreatment times from 0 to 420 min. The catalyst turnover numbers in the cross-metathesis experiments proved inversely proportional to the duration of ethylene treatment prior to the reaction. The activity of 1 pre-exposed to ethylene closely matched with the activity of the catalyst that decayed in the reaction mixture containing ethylene and cis-2-butene for the same period of time. A significant contribution of the Ru-methylidene decay to the activity losses in metathesis reactions was demonstrated directly in the cross-metathesis reaction environment. The catalyst proved to be less sensitive to cis-2-butene pretreatment and showed turnover numbers for subsequent cross-metathesis essentially similar to the reference cross-metathesis test.  相似文献   

11.
A microfabricated catalyst reactor, prepared from glass and polydimethylsiloxane, has been directly interfaced to a gas chromatograph permitting real time reaction monitoring allowing rapid catalyst characterisation.  相似文献   

12.
13.
The enhancement of ethylbenzene conversion by further displacement of the thermodynamic equilibrium via the influence of the dual-functionality of a well-mixed catalyst pattern has been investigated. A rigorous steady state mathematical model based on the dusty gas model is implemented for the simulation. The simulation results reveal that the introduction of the concept of the reaction coupling has significant effect on the displacement of the thermodynamic equilibrium and considerable enhancement of simultaneous production of styrene and cyclohexane. Almost 100% conversion of the ethylbenzene and benzene is achieved through the application of this approach. It is also found that considerable decrease in the reactor length is achieved by employing a reactor catalyst bed with different bed compositions. Effective operating regions with optimal conditions are observed. An effective reactor length criterion is used to evaluate the performance of the reactor under these optimal conditions. The effective reactor length is found to be sensitive and favored by high feed temperature and pressure. The sensitivity analysis shows that the key parameters of feed temperature, pressure, and the bed composition play an important role on the reactor performance. The results also show that almost 100% conversion of ethylbenzene and benzene at low temperature and shorter reactor length can be achieved by maintaining the reactor beds at different temperatures. This temperature switching policy may result in appreciable energy saving. Moreover, operating the reactor at low temperature protect the catalyst from the excessive temperatures which have destructive effects on the catalysts and the mechanical stability of the reactors. Also, the low temperature operation has significant contribution to the reduction of the operating cost.  相似文献   

14.
A novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures.  相似文献   

15.
A novel continuous-flow photocatalytic reactor was designed to decompose toluene by using porous nickel sheets that were coated with a Fe-doped TiO2 catalyst. While locating the UV lamp at the central axis, the catalyst sheets were located along the inner wall and positioned vertically with an equal space of 50 mm along the reactor. This geometry ensures better use of UV light, and a zigzag flow pattern of gas between the vertically located sheets provides for better mass transfer. The X-ray diffraction, scanning electron microscope and electric field-induced surface photovoltage spectra characterizations showed that Fe3+ ions were embedded effectively and distributed evenly throughout the TiO2 crystal lattice and an optimum molar ratio of Fe:Ti was 0.007. The reactor was used to investigate the factors that affect toluene degradation. The results showed that inlet toluene concentration, relative humidity and gas flow rate significantly affect toluene decomposition. The conversion decreases as inlet concentration increases. Degradation efficiencies of more than 95% can be achieved provided that the toluene concentration is kept below 3200 mg/m3. The conversion is affected little when oxygen content exceeds 21%. The optimal relative humidity is 25%. From the experimental data, a rate constant k of 131 mg/(m3.min) and Langmuir adsorption coefficient K of 0.0175 m3/mg were obtained.  相似文献   

16.
A conventional splitless injector is used as a pyrolysis chamber or chemical reactor for the N-demethylation of acetylcholine and other choline esters. The novel uses of 2-aminoethanol as a N-demethylation reagent in splitless injection and bonded-phase fused silica capillary columns in the separation of the tertiary amine derivatives of choline esters are described. A comparison is made between non-polar and moderately polar fused silica capillary columns in the separation of choline esters.  相似文献   

17.
A mathematical model to describe simultaneous mass transfer and a complex chemical reaction of selective fatty oil hydrogenation in a stationary catalyst bed is suggested. On the basis of experimental data numerical values of the model parameters have been found.
, . .
  相似文献   

18.
A tritium monitor based on plastic scintillation sheets is described. The sensitive volume of the scintillation chamber is 0.95 l. The chamber with coincidence electronics has a discrimination capability and permits to detect tritium in the presence of other radionuclides and external gamma-radiation. The monitor characteristics obtained with tritiated air are presented. The monitor sensitivity for tritium in air is 5.6 cpm for each kBq·m−3. The monitoring of tritium in air and water is possible using the instrument described.  相似文献   

19.
Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR). A parametric study of the effects of some process variables,including reaction temperature and space velocity,is undertaken. The operating conditions strongly affect the catalyst performance. Methane conversion was increased by increasing the temperature and lowering the space velocity. Using temperatures between 700 and 900℃ and space velocities between 3 and 6LN/(gcat·h),a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 hrun. In addition,carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.  相似文献   

20.
A rotating catalyst contact reactor (RCCR) was developed which consisted of palladized bacterial cellulose immobilized on acrylic discs for hydrodechlorination of pentachlorophenol (PCP). More than 99% of 40 mg L(-1) PCP was dechlorinated to phenol in the presence of hydrogen in batch mode at initial pH values of 5.5 and 6.5 within 2 h of reaction with stoichiometric release of free chloride. The rate of PCP dechlorination was found to be independent of rotational speed of discs. PCP (40 mg L(-1)) hydrodechlorination experiments were also conducted using RCCR in continuous flow mode at hydraulic retention times of 1 and 2 h. The average outlet PCP concentrations revealed that liquid phase in RCCR closely resembled that of a continuous flow complete mix reactor (CFMR). Approximately 12 and 11 L of 40 mg L(-1) PCP (pH 6.5) could be treated in RCCR with 99 and 80% efficiencies in batch and continuous flow modes, respectively without any appreciable loss of the catalytic activity. These results suggested reusability of palladized bacterial cellulose which in turn is expected to substantially reduce the cost of treatment process. Thus RCCR seems to have high potential for treatment of ground water contaminated with chlorinated organic compounds. Dried palladized bacterial cellulose has been used as a material for electrodes in a fuel cell. However, its application as a hydrodechlorination catalyst in a reactor operating under room temperature and atmospheric pressure has not been reported to the best of our knowledge. Scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analyses suggested the irreversible deposition of palladium (Pd 0) particles on the bacterial cellulose fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号