首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 12B1(X2B1), 12B2, 12A1, 12A2, 22B2, and 22A1 states of the ion were studied using CASPT2 and CASSCF methods. Calculations suggest that one should consider the 32A′ state instead of 22B2. The CASPT2 T0 calculations predict the energy ordering of 12B1(X2B1), 12B2, 12A1, 12A2, 32A′, and 22A1, which is in line with the experimental results by Pradeep and Shirley. The CASPT2 T0 values for the 12B2, 12A2, 32A′, and 22A1 states are close to the experimental values. The F-loss and H-loss dissociation processes were studied at the CASPT2//CASSCF level. The energy levels of low-lying states of are compared.  相似文献   

2.
Using pseudopotentials and double zeta basis sets with s, p diffuse functions and two sets of d functions, MRD-CI calculations were performed on As2(±), As4(+), GaAs, GaAs2(±) and Ga2As2(±). This study complements previous theoretical investigations on Ga(±) to Ga4(±) and GaAs(+). For As4 tetrahedral symmetry was assumed, and Re of X1A1 determined as 4.73a0. Vertical ionization potentials to several states of As4+ were calculated. For GaAs2, GaAs2+ and GaAs2, ground and one low-lying state were geometry-optimized, both in C2v (Ga-As-As), and linear symmetry (GaAsAs, C∞h and AsGaAs, D∞h). The lowest state of GaAs2 is 2B2 in C2v. For Ga2As2, the lowest state and low-lying excited states were optimized in various geometries. The most stable state has rhombic structure (1Ag in D2h), but T-form and other forms (C2v, C∞v, D∞h) are only 1–2 eV less stable. In D2h symmetry, several low-lying excited states of Ga2As2 were studied. The ground states of Ga2As2+ and Ga2As2 were found to be 2B2u, and 2B2g, respectively. Trends in ionization potentials (IP), electron affinities (EA), atomization energies and fragmentation energies for the molecules GaxAsy and the pure compounds Gan and Asn up to 4 atoms, were studied. GaxAsy clusters, with x + y even, have higher IP's than odd-numbered clusters. An experimentally observed alternation of EA, whereby an odd number of atoms have higher EA than their even neighbors, is confirmed. The mixed compounds GaxAsy have atomization energies between those of Gan and Asn (x + y = n), usually closer to those of Gan. Fragmentation of GaxAsy occurs such that As----As bonds are retained, and if possible, also Ga----As bonds, since the dissociation energy of As2 is higher than that of GaAs, which in turn is higher than that of Ga2. Calculated fragmentation energies agree qualitatively with experimental observations about the composition of 3-atomic and 4-atomic clusters GaxAsy.  相似文献   

3.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

4.
New fluoride compound Na2K2NdF7 has been synthesised and obtained in the single crystal form by the Bridgman method. The crystal is cubic, space group , with lattice parameters a = 1.28283 (15) nm. In this structure Nd3+ ions reside in sites with C4v symmetry. Judd–Ofelt analysis of optical absorption spectra revealed that radiative lifetime of the 4F3/2 level of Nd3+ equals to 460 μs. Measured lifetime is 2.8 μs for Na2K2NdF7 and 439 μs for Na2K2La0.99Nd0.01F7, in agreement with the calculated value.  相似文献   

5.
硫代嘧啶碱基是光动力疗法潜在的重要光敏剂,其最低单重激发态的光物理研究已有广泛报道。然而,其较高激发态的跃迁性质和反应动力学研究较为稀少。因此,本文采用共振拉曼光谱和密度泛函理论计算方法研究2,4-二硫代尿嘧啶的紫外光谱和几个较高单重激发态的短时结构动力学。首先,基于共振拉曼光谱强度与电子吸收带振子强度f的关系,将紫外光谱去卷积成四个吸收带,分别为358 nm(f=0.0336)中等强度吸收带(A带),338 nm(f=0.1491)、301 nm(f=0.1795)和278 nm(f=0.3532)强而宽的吸收带(B、C和D带)。这一结果既吻合密度泛函理论计算结果,又符合共振拉曼光谱强度模式对紫外光谱带的预期。据此,去卷积得到的四个吸收带被分别指认为S0→S2跃迁、S0→S6跃迁、S0→S7跃迁和S_0→S_8跃迁。同时,分别对B,C和D带共振拉曼光谱进行了详细的指认,获得了短时动力学信息。结果表明,S_8态短时动力学的显著特征是在Franck-Condon区域或附近发生了S8(ππ~*)/S(nπ~*)势能面交叉引发的、伴随超快结构扭转的非绝热过程。S7和S6态短时动力学的主要特征是反应坐标的多维性,它们分别沿C_5C_6/C_2S_8/C_4S_(10)/N_2C_3+C_4N_3H_9/N_1C_2N_3/C_2N_1C_6/C_6N_1H_7/C_5C_6H_(12)和C_5C_6/N_3C_2/C_4S_(10)/C_2S_8+C_6N_1H_7/C_5C_6H_(12)/C_5C_6N_1/C_5C_6H_(12)/C_2N_1C_6/N_1C_2N_3/C_4N_3H_9/N_1C_2N_3等内坐标演化。  相似文献   

6.
The pure rotational Raman spectra of C214N2 and C215N2 have been recorded photographically using a 3-metre spectrograph with a reciprocal linear dispersion of 1.4 cm−1 mm−1 at 488.0 nm and analysed to give the rotational and centrifugal distortion constants for both species. Corrections were applied to compensate for the effect of molecules in excited vibrational states on the pure rotational spectra. Comparisons are made with previous infrared vibration—rotational studies on these species and with previous Raman studies on C214N2. The following bond lengths were calculated: r0(C---N) = 116 ± 1 pm; r0(C---C) = 138 ± 2 pm.  相似文献   

7.
The syntheses and structural determination of NdIII and ErIII complexes with nitrilotriacetic acid (nta) were reported in this paper. Their crystal and molecular structures and compositions were determined by single-crystal X-ray structure analyses and elemental analyses, respectively. The crystal of K3[NdIII(nta)2(H2O)]·6H2O complex belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5490(11) nm, b=1.3028(9) nm, c=2.6237(18) nm, β=96.803(10)°, V=5.257(6) nm3, Z=8, M=763.89, Dc=1.930 g cm−3, μ=2.535 mm−1 and F(000)=3048. The final R1 and wR1 are 0.0390 and 0.0703 for 4501 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0758 and 0.0783 for all 10474 reflections, respectively. The NdIIIN2O7 part in the [NdIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly. The crystal of the K3[ErIII(nta)2(H2O)]·5H2O complex also belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5343(5) nm, b=1.2880(4) nm, c=2.6154(8) nm, b=96.033(5)°, V=5.140(3) nm3, Z=8, M=768.89, Dc=1.987 g cm−3, μ=3.833 mm−1 and F(000)=3032. The final R1 and wR1 are 0.0321 and 0.0671 for 4445 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0432 and 0.0699 for all 10207 reflections, respectively. The ErIIIN2O7 part in the [ErIII(nta)2(H2O)]3− complex anion has the same structure as NdIIIN2O7 part in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly.  相似文献   

8.
The rate constants, k1 and k2 for the reactions of C2F5OC(O)H and n-C3F7OC(O)H with OH radicals were measured using an FT-IR technique at 253–328 K. k1 and k2 were determined as (9.24 ± 1.33) × 10−13 exp[−(1230 ± 40)/T] and (1.41 ± 0.26) × 10−12 exp[−(1260 ± 50)/T] cm3 molecule−1 s−1. The random errors reported are ±2 σ, and potential systematic errors of 10% could add to the k1 and k2. The atmospheric lifetimes of C2F5OC(O)H and n-C3F7OC(O)H with respect to reaction with OH radicals were estimated at 3.6 and 2.6 years, respectively.  相似文献   

9.
A new tellurium-containing heterocyclic compound, 2,2,6,6-tetramethyl-1-oxa-4-tellura-2,6-disilacyclohexane (C6H16OSi2Te) (1), has been prepared by treatment of 1,3-bis(chloromethyl)-1,1,3,3-tetramethyldisiloxane with sodium telluride. Mononuclear and dinuclear palladium complexes of this telluride have been prepared by the reaction of 1 with PdCl2(PhCN)2 and Na2PdCl4, respectively. The following new derivatives of 1 have also been produced: C6H16OSi2TeI2 (2), C6H16OSi2TeBr2, C6H16OSi2TeCl2, C6H16OSi2Te(CH3)I, and C6H16OSi2Te(CH2Ph)Br. IR, 1H and 13C NMR and mass spectral data of these new compounds are reported and discussed. 1H NMR studies revealed that in CDCl3 solution both telluronium salts reductively eliminate alkyl halide. The crystal structure of compound 2 has been determined by X-ray diffraction. The compound crystallizes in the monoclinic space group, P21/c, with four molecules in a unit cell of dimension a 12.960(3), b 8.846(2), c 13.754(4) Å, β 92.44(2)°, R = 0.049, and Rw = 0.067 for 3599 unique reflections with |F0| > 3σ(F0). The compound forms a six-membered ring of a slightly displaced boat type. The geometry about the Te atom is pseudo-octahedral, with two carbon atoms (Te-C = 2.156(7) and 2.137(6) Å) and two iodine atoms of the neighbouring molecules (weak intermolecular bonds, Te · I = 3.769 and 3.806 Å) in the equatorial positions and two iodine atoms (Te-I = 2.909(1) and 2.913(1) Å) in the axial positions.  相似文献   

10.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

11.
The hydroxo-complexes [{PdR(PPh3)(μ-OH)}2] (R = C6F5 or C6Cl5) have been obtained by reaction of the corresponding [{PdR(PPh3)(μ-Cl)}2] complexes with NBu4OH in acetone. In this solvent, the reaction of the hydroxo-bridged complexes with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz) in 1:2 molar ratio leads to the formation of the new complexes [{Pd(C5F5)(PPh3)(μ-azolate)}2] and [{Pd(C6Cl5)(PPh3)}2(μ-OH)(μ-azolate)] (azolate = pz or dmpz). The reaction of the bis(μ-hydroxo) complexes with Hpz and Hdmpz in acetone in 1:1 molar ratio has also been studied, and the resulting product depends on the organic radical (C6F5 or C6Cl5) as well as the azolate (pz or dmpz). The identity of the isomer obtained has been established in every case by NMR (1H, 19F and 31P) spectroscopy. The reaction of the bis(μ-hydroxo) complexes with oxalic (H2Ox) and acetic (HOAc) acids yields the binucle ar complexes [{PdR(PPh3)}2(μ-Ox)] (R = C6F5 or C6Cl5) and [{Pd(C6F5)(PPh3)(μ-OAc)}2], respectively. [{Pd(C6F5)(PPh3)(μ-OH)}2] reacts with PPh3 in acetone in 1:2 ratio giving the mononuclear complex trans-[Pd(C6F5) (OH)(PPh3)2], whereas the pentachlorophenylhydroxo complex does not react with PPh3, even under forcing conditions.  相似文献   

12.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


13.
The symmetry unrestricted C36F2 isomers formed from fullerene C36, the initial symmetry of which is C6v, C6h, or D2d, have been extensively studied with semi-empirical (AM1 and PM3) calculations. Based on the relationship between the isomer's stability and the adding positions, three patterns of the adding sites of F2 moiety in the additive reactions have been deducted. The results of the π-orbital axis vector (POAV) analysis indicate that the chemical reactivity of C36 is the result of the high strain in the C36 cage. But, in order to form stable compounds, the effects, which guide the F2 moiety to select carbon atoms in the C36 cage, are dominated by the conjugate effect in C36F2 system rather than the strain release in the C36 cage.  相似文献   

14.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

15.
The geometric structure of c-C4F8SF4 has been determined by gas-phase electron diffraction. The five-membered ring has the twist form (C2 symmetry) with a puckering amplitude q = 0.42 (2) Å. The following principle geometric parameters (ra values) with estimated uncertainties have been derived: (C---C)av = 1.541(10), S---C = 1.896(7), S---Fe = 1.558(6), S---Fa = 1.594(6) Å, CSC = 90.0(9)°, SCC = 109.1(8)°, CCC = 106.5(12)°, FaSFe = 90.5(15)° and FeSFe = 87.7(29)°. Vibrational amplitudes for long non-bonded CF and FF distances indicate a high barrier to pseudorotation of the ring.  相似文献   

16.
The mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction has been examined using ab initio molecular orbital methods. Ground-state and first-excited-state potential surfaces were plotted at the FOCI/cc-pVTZ level of theory as functions of two appropriate internal degrees of freedom. A conical intersection was found on the Cs pathway that is symmetric with respect to the plane perpendicular to the molecular plane of C2v H2NO(2B1). It is therefore considered that trajectories that start from H2NO(2B1) towards the product region detour around the conical intersection, pass through the neighborhood of the transition state that is located at the saddle point on the Cs pathway, and finally reach the products, NO(2Π)+H2. Thus we can explain the mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction, which has remained unclear to date.  相似文献   

17.
Difluorinated higher fullerenes have been studied by Knudsen cell mass spectrometry. Thermal negative ions CnF2 (n=60, 70, 72, 74, 76 and 78) were produced inside the effusion cell as well as the neutral molecules C60F2 and C70F2. From the equilibrium constants for the electron exchange reactions between difluorinated fullerenes and their parents electron affinity values were derived for C60F2 (2.74 eV) and C70F2 (2.80 eV).  相似文献   

18.
Reactions of [C6F5Xe]+ [AsF6] in acetonitrile with halide anions X show different results depending on X. If X = I, Br or Cl, then C6F5X is obtained. If X = F, then C6F5H and C6F5---C6F5 are produced, and if X = HF2, then C6F6, C6F5H and C6F5---C6F5 are formed.  相似文献   

19.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

20.
Reactions of the lithium salts of 3-substituted indenes 1, 2 with ZrCl4(THF)2 gave two series of nonbridged bis(1-substituted)indenyl zirconocene dichloride complexes. Fractional recrystallization from THF–petroleum ether furnished the pure racemic and mesomeric isomers of [(η5-C9H6-1-C(R1)(R2)---o-C6H4---OCH3)2ZrCl2nTHF (R1=R2=CH3, n=1, rac-1a and meso-1b; R1=CH3, R2=C2H5; n=0.5 or 0, rac-2a and meso-2b), respectively. Complex 1a was further characterized by X-ray diffraction to have a C2 symmetrically racemic structure, where the six-member rings of the indenyl parts are oriented laterally and two o-CH3O---C6H4---C(CH3)2--- substituents are oriented to the open side of the metallocene (Ind: bis-lateral, anti; Substituent: bis-central, syn). The four zirconocene complexes are highly symmetrical in solution as characterized by room temperature 1H-NMR, however 1H–1H NOESY of meso-1b shows that some of the NOE interactions arise from the two separated indenyl parts of the same molecule, which can only be well explained by taking into account the torsion isomers in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号