首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we explore the global phase behavior of a simple model for self-associating fluids where association reduces the strength of the dispersion interactions between bonded particles. Recent research shows that this type of behavior likely explains the thermodynamic properties of strongly polar fluids and certain micellar solutions. Based on Wertheim's theory of associating liquids [M. S. Wertheim, J. Stat. Phys. 42, 459 (1986); 42, 477 (1986)], our model takes into account the effect that dissimilar particle interactions have on the equilibrium constant for self-association in the system. We find that weaker interactions between bonded molecules tend to favor the dissociation of chains at any temperature and density. This effect stabilizes a monomeric liquid phase at high densities, enriching the global phase behavior of the system. In particular, for systems in which the energy of mixing between bonded and unbonded species is positive, we find a triple point involving a vapor, a dense phase of chain aggregates, and a monomeric liquid. Phase coexistence between the vapor and the monomeric fluid is always more stable at temperatures above the triple point, but a highly associated fluid may exist as a metastable phase under these conditions. The presence of this metastable phase may explain the characteristic nucleation behavior of the liquid phase in strongly dipolar fluids.  相似文献   

2.
Based on replica integral equations in the (reference) hypernetted chain approximation we investigate the structural features and phase properties of a dipolar Stockmayer fluid confined to a disordered dipolar matrix. The integral equations are applied to the homogeneous high-temperature phase where the system is globally isotropic. At low densities we find the influence of dipolar interactions between fluid (f) and matrix (m) particles to be surprisingly similar to the previously investigated effect of attractive isotropic (fm) interactions: the critical temperature of the vapor-liquid transition decreases with increasing (fm) coupling, while the critical density increases. The anisotropic nature of the dipolar (fm) interactions turns out to play a more dominant role at high fluid densities where we observe a pronounced sensitivity in the dielectric constant and a strong degree of local orientational ordering of the fluid particles along the local fields generated by the matrix. Moreover, an instability of the dielectric constant, which is a precursor of ferroelectric ordering occurring both in bulk Stockmayer fluids and in fluids in nonpolar matrices, is observed only for very small dipolar (fm) couplings.  相似文献   

3.
A lattice analog of density functional theory is used to explore the structural and thermodynamic properties of critical nuclei in mixtures of particles with attractive anisotropic interactions. Protein molecules are assumed to occupy the sites on a regular cubic lattice, with effective directional interactions that mimic hydrogen bonding and the solvation forces induced by water. Interaction parameters are chosen to qualitatively reproduce the phase behavior of protein solutions. Our model predicts that critical nuclei of the solidlike phase have nonspherical shapes, and that their specific geometry depends on the nature of the anisotropic interactions. Molecules tend to align in distinctive ways in the core and in the interfacial region of these critical clusters, and the width and structure of the interface are highly affected by the presence of a metastable fluid-fluid critical point. Close to the critical region, the height of the barrier to nucleation is strongly reduced; this effect is enhanced by increasing the anisotropy of the intermolecular interactions. Unlike systems with short-range isotropic interactions, nucleation in our model is initiated by highly ordered clusters in which the order-disorder transition is confined to the interfacial region.  相似文献   

4.
Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.  相似文献   

5.
The formation of crystalline nuclei from solution has been shown for many systems to occur in two steps: the formation of quasidroplets of a disordered intermediate, followed by the nucleation of ordered crystalline embryos within these droplets. The rate of each step depends on a respective free-energy barrier and on the growth rate of its near-critical clusters. We address experimentally the relative significance of the free-energy barriers and the kinetic factors for the nucleation of crystals from solution using a model protein system. We show that crystal nucleation is 8-10 orders of magnitude slower than the nucleation of dense liquid droplets, i.e., the second step is rate determining. We show that at supersaturations of three or four k(B)T units, crystal nuclei of five, four, or three molecules transform into single-molecule nuclei, i.e., the significant nucleation barrier vanishes below the thermal energy of the molecules. We show that the main factor, which determines the rate of crystal nucleation, is the slow growth of the near-critical ordered clusters within the quasidroplets of the disordered intermediate. Analogous to the spinodal in supersaturated fluids, we define a solution-to-crystal spinodal from the transition to single-molecule crystalline nuclei. We show that heterogeneous nucleation centers accelerate nucleation not only because of the wettinglike effects that lower the nucleation barrier, as envisioned by classical theory, but by helping the kinetics of growth of the ordered crystalline embryos.  相似文献   

6.
Inspired by the previous finding of some unusual vapour/liquid nucleation results on the ternary water/n-nonane/1-butanol system, atomistic simulations were carried out for a detailed investigation of this mixture. These simulations reproduced the experimentally-reported non-ideal nucleation behaviour for this system, including both onset activities and the average compositions of the critical nuclei. Close examination of the nucleation free energy data and the structure of the critical nuclei reveals two types of phase separation. One occurs internally inside the cluster via formation of a multi-layered structure. The other takes place externally, leading to the coexistence of multiple nucleation channels, characterized by critical clusters of different compositions. Such mechanistic and structural heterogeneity is the microscopic origin of the complex nucleation behaviour observed for this ternary mixture.  相似文献   

7.
We report molecular dynamics simulation results for Stockmayer fluids confined to narrow slitlike pores with structureless, nonconducting walls. The translational and rotational dynamics of the dipolar particles have been investigated by calculating autocorrelation functions, diffusion coefficients, and relaxation times for various pore widths (five or less particle diameters) and directions parallel and perpendicular to the walls. The dynamic properties of the confined systems are compared to bulk properties, where corresponding bulk and pore states at the same temperature and chemical potential are determined in parallel grand canonical Monte Carlo simulations. We find that the dynamic behavior inside the pore depends on the distance from the walls and can be strongly anisotropic even in globally isotropic systems. This concerns especially the particles in the surface layers close to the walls, where the single particle and collective dipolar relaxation resemble that of true two-dimensional dipolar fluids with different in-plane and out-of-plane relaxations. On the other hand, bulklike relaxation is observed in the pore center of sufficiently wide pores.  相似文献   

8.
Magnetite (Fe3O4) forms the basis of most dispersions studied in the field of magnetic fluids and magnetic colloids. Despite extensive theory and simulations on chain formation in dipolar fluids in zero field, such structures have not yet been imaged in laboratory-made magnetite dispersions. Here, we present the first direct observation of dipolar chain formation in zero field in a ferrofluid containing the largest synthetic single-domain magnetite particles studied so far. To our knowledge, this is the only ferrofluid system available at present that allows quantifying chain length and ring-size distributions of dipolar structures as a function of concentration and particle size.  相似文献   

9.
We use a local density functional theory in the square gradient approximation to explore the properties of critical nuclei for the liquid-vapor transition of van der Waals fluids in cylindrical capillaries. The proposed model allows us to investigate the effect of pore size, surface field, and supersaturation on the behavior of the system. Our calculations predict the existence of at least three different pathways for the nucleation of droplets and bubbles in these confined fluids: axisymmetric annular bumps and lenses, and asymmetric droplets. The morphological transition between these different structures is driven by the existence of states of zero compressibility in the capillary. We show that the classical capillarity theory provides surprisingly accurate predictions for the work of formation of critical nuclei in cylindrical pores when line tension contributions to the free energy are taken into account.  相似文献   

10.
We present a new Monte Carlo simulation procedure which is capable of capturing aggregate structures in a suspension where fine particles are dispersed. The algorithm we call the “cluster-moving” Monte Carlo algorithm involves moving aggregates (clusters) as unitary particles at every certain Monte Carlo step. We discuss here the theoretical background of the cluster-moving Monte Carlo algorithm and the availability of the algorithm for simulations of systems where fine particles aggregate. The results of simulations for two model systems, magnetic fluids and colloidal dispersions, have shown that the new algorithm produces much more rapid convergence than the conventional one for unstable dispersion systems and reproduces physically reasonable aggregate structures of fine particles.  相似文献   

11.
We report a numerical simulation of the rate of crystal nucleation of sodium chloride from its melt at moderate supercooling. In this regime nucleation is too slow to be studied with "brute force" molecular-dynamics simulations. The melting temperature of ("Tosi Fumi") NaCl is approximately 1060 K. We studied crystal nucleation at T = 800 and 825 K. We observe that the critical nucleus formed during the nucleation process has the crystal structure of bulk NaCl. Interestingly, the critical nucleus is clearly faceted, the nuclei have a cubical shape. We have computed the crystal-nucleation rate using two completely different approaches, one based on an estimate of the rate of diffusive crossing of the nucleation barrier, the other based on the forward flux sampling and transition interface sampling methods. We find that the two methods yield the same result within an order of magnitude. However, when we compare the extrapolated simulation data with the only available experimental results for NaCl nucleation, we observe a discrepancy of nearly five orders of magnitude. We discuss the possible causes for this discrepancy.  相似文献   

12.
The initial nucleation of platinum clusters after the reduction of K(2)PtCl(4) in aqueous solution is studied by means of first principles molecular dynamics simulations. A reaction mechanism leading to a Pt dimer is revealed both by gas-phase simulations and by simulations which model the solution environment. The key step of the observed reaction process is the formation of a Pt-Pt bond between a Pt(I) complex and an unreduced Pt(II) complex. In light of this result, we discuss the reduction process leading to the formation of platinum nanoparticles. In the generally accepted model, the nucleation of Pt particles starts only when a critical concentration of Pt(0) atoms is reached. Here, we discuss a complementary mechanism where metal-metal bonds form between Pt complexes in higher oxidation states. This is consistent with a number of experimental results which show that a high concentration of zerovalent atoms is not necessary to start the nucleation.  相似文献   

13.
In a corresponding-states analysis of the liquid-vapor surface tension originally suggested by Guggenheim, we study the behavior of different simple (i.e., nonpolar), polar and ionic fluids. The results are compared to the corresponding ones for model fluids of each of the three types. For simple and weakly polar fluids (both real and model), the data map onto a master curve, as demonstrated by Guggenheim. For strongly dipolar, associating fluids, which also exhibit hydrogen bonding, one finds deviations from the master curve at low temperatures and, thus, observes the characteristic sigmoid behavior of the reduced surface tension as a function of temperature. The same is obtained for the model ionic fluid, the restricted primitive model. Truly exceptionally low values of the reduced surface tension are found for hydrogen fluoride and for the Onsager model of dipolar fluids, the surface tension of which we evaluate using an approximate hypernetted chain relation to obtain the square-gradient term in a modified van der Waals theory. Remarkably, in the corresponding-states plot, the surface tensions of HF and of the Onsager model agree very closely, while being well separated from the values for the other fluids. We also study the gradual transition of a model fluid from a simple fluid to a strongly dipolar one by varying the relative strength of dipolar and dispersion forces.  相似文献   

14.
By combining the gauge cell method and lattice model, we study the surface phase transition and adsorption behaviors of surfactants on a solid surface. Two different cases are considered in this work: macrophase transition and adsorption in a single-phase region. For the case of macrophase transition, where two phases coexist, we investigate the shape and size of the critical nuclei and determine the height of the nucleation barrier. It is found that the nucleation depends on the bulk surfactant concentration. Our simulations show that there exist a critical temperature and critical adsorption energy, below which the transition from low-affinity adsorption to the bilayer structure shows the characteristic of a typical first-order phase transition. Such a surface phase transition in the adsorption isotherm is featured by a hysteresis loop. The hysteresis loop becomes narrower at higher temperature and weaker adsorption energy and finally disappears at the critical value. For the case where no macrophase transition occurs, we study the adsorption isotherm and microphase separation in a single-phase region. The simulation results indicate that the adsorption isotherm in adsorption processes is divided into four regions in a log-log plot, being in agreement with experimental observations. In this work, the four regions are called the low-affinity adsorption region, the hemimicelle region, the morphological transition region, and the plateau region. Simulation results reveal that in the second region the adsorbed monomers aggregate and nucleate hemimicelles, while adsorption in the third region is accompanied by morphological transitions.  相似文献   

15.
We report on a computer simulation study of the early stages of the crystallization of molecular nitrogen. First, we study how homogeneous nucleation takes place in supercooled liquid N(2) for a moderate degree of supercooling. Using the umbrella sampling technique, we determine the free energy barrier of formation for a critical nucleus of N(2). We show that, in accord with Ostwald's rule of stages, the structure of the critical nucleus is predominantly that of a metastable polymorph (alpha-N(2) for the state point investigated). We then monitor the evolution of several critical nuclei through a series of unbiased molecular dynamics trajectories. The growth of N(2) crystallites is accompanied by a structural evolution toward the stable polymorph beta-N(2). The microscopic mechanism underlying this evolution qualitatively differs from that reported previously. We do not observe any dissolution or reorganization of the alpha-like core of the nucleus. On the contrary, we show that alpha-like and beta-like blocks coexist in postcritical nuclei. We relate the structural evolution to a greater adsorption rate of beta-like molecules on the surface and show that this transition actually starts well within the precritical regime. We also carefully investigate the effect of the system size on the height of the free energy barrier of nucleation and on the structure and size of the critical nucleus.  相似文献   

16.
Monte Carlo simulations are used to examine the cooperative creation of a polar state in fluids of two-state particles with nonzero dipole in the excited state. With lowering temperature such systems undergo a second-order transition from nonpolar to polar, paraelectric phase. The transition is accompanied by a dielectric anomaly of polarization susceptibility increasing by three orders of magnitude. The paraelectric phase is then followed by a formation of a nematic ferroelectric which further freezes into a fcc ferroelectric crystal by a first-order transition. A mean-field model of phase transitions is discussed.  相似文献   

17.
In this work, we study condensation phase transitions of two-dimensional Stockmayer fluids under additional external fields using Monte-Carlo (MC) simulations in the grand-canonical ensemble. We employ two recently developed methods to determine phase transitions in fluids, namely Wang-Landau (WL) MC simulations and successive-umbrella (SU) sampling. Considering first systems in zero field (and dipolar coupling strengths μ(2)∕εσ(3) ≤ 6), we demonstrate that the two techniques yield essentially consistent results but display pronounced differences in terms of efficiency. Indeed, comparing the computation times for these systems on a qualitative level, the SU sampling turns out to be significantly faster. In the presence of homogeneous external fields, however, the SU method becomes plagued by pronounced sampling difficulties, yielding the calculation of coexistence lines essentially impossible. Employing the WL scheme, on the other hand, we find phase coexistence even for strongly field-aligned systems. The corresponding critical temperatures are significantly shifted relative to the zero-field case.  相似文献   

18.
19.
Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Sch?tzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles.  相似文献   

20.
A new method for deriving the size of the critical nucleus and the Zeldovich factor directly from kinetic data is presented. Moreover, in principle, the form of G(n), the free energy of formation of nuclei consisting of n molecules, can be inferred. The method involves measuring times of first appearance of nuclei of size n in the transient regime and applying the Becker-Doring theory. Times of first appearance exhibit the same characteristics as the conventional times associated with N(n,t), the number of nuclei of at least size n per unit volume that have materialized at time t. That is, they are well represented by three nucleation parameters, the reduced moment, the time lag, and the steady state nucleation rate. But unlike the conventional steady state rate which is independent of n, the steady state times of first appearance vary with n. In order to characterize the three nucleation parameters with precision, however, thousands of independent stochastic events with known n are required. Such sets of data are readily generated in molecular dynamic simulations but, so far, not in laboratory experiments. Results are illustrated by an analysis of simulations of the spontaneous freezing of large clusters of SeF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号