共查询到20条相似文献,搜索用时 15 毫秒
1.
Dawid Lewandowski Anna Olejnik Grzegorz Schroeder 《Central European Journal of Chemistry》2014,12(2):233-241
Functionalized mesoporous MCM-41 silica was subjected to adsorption and release studies of encapsulated guest molecules of three chosen dyes. These mesoporous systems were composed of three different capping reagents introduced by grafting method on the silica surface to control the release of dye molecules at two different pH values. The amounts of dyes adsorbed on the silica surface were measured using ultraviolet-visible (UV-VIS) spectrophotometry. The efficiency of grafting was calculated on the basis of differential thermal analysis (TG) results and elemental analysis. The release profiles were determined for all obtained systems using USP Dissolution Apparatus 2. Adsorption of the two azo dyes used was the most efficient after the positively charged functionalization and lower after functionalization with neutral and negatively charged capping reagents, while the phthalocyanine dye adsorption was almost functionalization-independent. Grafting efficiency was the highest for neutral capping reagent and much lower for electrically charged molecules of other reagents. Release studies showed clearly that desorption was pH-dependent for azo dyes and pH independent for Alcian Blue. The adsorption and release seem to be connected with the electrical charge of all constituents of these systems. Results obtained can be used for further analysis of different electrically charged molecules. 相似文献
2.
Trébosc J Wiench JW Huh S Lin VS Pruski M 《Journal of the American Chemical Society》2005,127(9):3057-3068
A systematic study of the surface of MCM-41-type mesoporous silica nanoparticles prepared under low surfactant concentration was carried out using high-resolution solid-state nuclear magnetic resonance spectroscopy. The structures and concentrations of various species present during dehydration and rehydration of mesoporous silicas between -25 and 500 degrees C were detailed by employing one-dimensional and two-dimensional (1)H, (13)C, and (29)Si NMR, including (1)H signal intensity measurements, (1)H-(1)H homonuclear correlation experiments (double quantum, exchange, and RFDR), and (1)H-(29)Si heteronuclear correlation NMR. These experiments employed high MAS rates of up to 45 kHz. The study shows that the surfactant (CTAB) was almost completely removed by acid extraction. The residual molecules assumed prone positions along the pores, with the tailgroup being most mobile. The weakly adsorbed water was hydrogen bonded to the silanol groups, all of which were involved in such bonds under ambient humidity. Specific structures involving water and silanol groups were proposed for various stages of thermal treatment, which included dehydration, dehydroxylation, and subsequent rehydration. 相似文献
3.
Dá?a Halamová Vladimír Zeleňák 《Journal of inclusion phenomena and macrocyclic chemistry》2012,72(1-2):15-23
Hexagonally ordered mesoporous silica material MCM-41 (SBET?=?1090?m2/g, pore size?=?31.2 ?) was synthesized and modified by 3-aminopropyl ligands. The differences in an uptake and subsequent release of anti-inflammatory drug naproxen from unmodified and amino modified MCM-41 samples were studied. The prepared materials were characterized by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), nitrogen adsorption/desorption, Fourier-Transform Infrared Spectroscopy (FT-IR), Small-angle X-ray scattering (SAXS), thermoanalytical methods (TG/DTA) and elemental analysis. The amount of the drug released was monitored with thin layer chromatography (TLC) with densitometric detection in defined time intervals. The amounts of the released naproxen from mesoporous silica MCM-41/napro and amine-modified silica sample A-MCM-41/napro were 95 and 90% of naproxen after 72?h. In this study we compare the differences of release profiles from mesoporous silica MCM-41 and mesoporous silica SBA-15. 相似文献
4.
Singh N Karambelkar A Gu L Lin K Miller JS Chen CS Sailor MJ Bhatia SN 《Journal of the American Chemical Society》2011,133(49):19582-19585
Mesoporous silica nanoparticles (MSNPs) have garnered a great deal of attention as potential carriers for therapeutic payloads. However, achieving triggered drug release from MSNPs in vivo has been challenging. Here, we describe the synthesis of stimulus-responsive polymer-coated MSNPs and the loading of therapeutics into both the core and shell domains. We characterize MSNP drug-eluting properties in vitro and demonstrate that the polymer-coated MSNPs release doxorubicin in response to proteases present at a tumor site in vivo, resulting in cellular apoptosis. These results demonstrate the utility of polymer-coated nanoparticles in specifically delivering an antitumor payload. 相似文献
5.
Sulfonic acid groups anchored to the surface of mesoporous MCM-41 silica have been identified with S K-edge XANES spectra and the material is an efficient catalyst for the liquid phase condensation of phenol with acetone to form Bisphenol-A with high selectivity. 相似文献
6.
Controlled drug release from bifunctionalized mesoporous silica 总被引:2,自引:0,他引:2
Wujun Xu Qiang Gao Yao Xu Dong Wu Wanling Shen Feng Deng 《Journal of solid state chemistry》2008,181(10):2837-2844
Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups. 相似文献
7.
Yahan Cui Rong Deng Xiangshuai Li Xinghuo Wang Qiong Jia Emilie Bertrand Kamel Meguellati Ying-Wei Yang 《中国化学快报》1990,30(12):2291-2294
A multifunctional nanohybrid based on mesoporous silica nanoparticle and biocompatible polypeptide was fabricated for targeted and dual-responsive therapy of tumor cells. 相似文献
8.
《中国化学快报》2019,30(12):2291-2294
A biopolymer-inorganic hybrid system (MSN@PBLGF) is designed and fabricated from mesoporous silica nanoparticles (MSNs) and folic acid (FA)-terminated temperature-sensitive synthetic polypeptide, i.e., poly(γ-benzyl-l-glutamate) (PBLG) derivative, through a thiol-disulfide exchange reaction, where MSNs with high drug loading capacity serve as drug nanocarriers and the biocompatible PBLG biopolymer brushes installed on MSN surface through disulfide bonds endow the system with tumor-specific recognition ability and GSH/temperature dual-stimuli responsiveness. Controlled drug release experiments indicate that DOX can be tightly hosted in the system with limited premature release, but efficiently released in response to an increased concentration of GSH and/or an elevated temperature. Intracellular experiments demonstrate that the DOX-loaded MSN@PBLGF nanohybrid shows outstanding cellular uptake and cell-growth inhibition effects on human lung cancer cell line A549 in comparison with healthy human cells such as hepatocyte cells LO2. 相似文献
9.
Amine-functionalized mesoporous SBA-15 silica loaded with bovine serum albumin (BSA) has been successfully encapsulated with a thin layer coating of poly(acrylic acid) PAA, with the entrapped BSA being released from the PAA-encapsulated SBA-15 at the higher pH value of 7.4 rather than at the lower pH value of 1.2. This novel drug delivery system has a potential application in the release of protein drug to the site of higher pH value, such as small intestine or colon. 相似文献
10.
Wu KC Yamauchi Y Hong CY Yang YH Liang YH Funatsu T Tsunoda M 《Chemical communications (Cambridge, England)》2011,47(18):5232-5234
Mesoporous titania nanoparticles (MTNs) with excellent biocompatibility (LC(50)≈ 400 μg mL(-1)) and a large surface area (ca. 237.3 m(2) g(-1)) were synthesized and further functionalized with a phosphate-containing fluorescent molecule (i.e. flavin mononucleotide; FMN) and loaded with an anticancer drug (i.e. Doxorubicin) for successful intracellular bioimaging and drug delivery, respectively, in human breast cancer cells BT-20. 相似文献
11.
A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery. 相似文献
12.
The release of the water-soluble drug Captopril is controlled by tailoring the surface properties of mesoporous silica via stepwise silylation. The degree of silylation is manipulated by adjusting the initial concentration of silylanizing reagent (trimethylchlorosilane, TMCS). The silylanized and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N2 adsorption and desorption, 29Si cross-polarization magic angle spinning NMR spectroscopy, and transmission electron microscopy. The drug-loading amount is correlated to the Brunauer-Emmett-Teller surface area and surface hydrophilicity/hydrophobicity of the mesoporous silica material, while drug release profiles can be controlled by tailoring the surface properties and pore size. 相似文献
13.
Ping Huang Daizheng Lian Hualin Ma Nansha Gao Limin Zhao Ping Luan Xiaowei Zeng 《中国化学快报》2021,32(12):3696-3704
Drug delivery systems (DDS) are used to deliver therapeutic drugs to improve selectivity and reduce side effects. With the development of nanotechnology, many nanocarriers have been developed and applied to drug delivery, including mesoporous silica. Mesoporous silica nanoparticles (MSNs) have attracted a lot of attention for simple synthesis, biocompatibility, high surface area and pore volume. Based on the pore system and surface modification, gated mesoporous silica nanoparticles can be designed to realize on-command drug release, which provides a new approach for selective delivery of antitumor drugs. Herein, this review mainly focuses on the “gate keepers” of mesoporous silica for drug controlled release in nearly few years (2017–2020). We summarize the mechanism of drug controlled release in gated MSNs and different gated materials: inorganic gated materials, organic gated materials, self-gated drug molecules, and biological membranes. The facing challenges and future prospects of gated MSNs are discussed rationally in the end. 相似文献
14.
Marko Spaic Darcy P. Small Justin R. Cook Wankei Wan 《Cellulose (London, England)》2014,21(3):1529-1540
Bacterial cellulose (BC) is a biocompatible biopolymer synthesized by Gluconacetobacter xylinus. In this study, BC was oxidized and aminated to produce hydrogels for biomedical applications, and the products were characterized. A carboxyl (pKa of 3.9 ± 0.1) content of 1.13 ± 0.02 mmol/g was obtained with the TEMPO-catalyzed oxidation. Epichlorohydrin-mediated amination introduced amine groups (pKa of 11.0 ± 0.1) up to 1.74 ± 0.06 mmol/g. The oxidation of BC caused a decrease in its ζ-potential to ?103 ± 6 mV, and amination increased the ζ-potential to ?4 ± 6 mV. The fibre diameter decreased after both reactions. The high absolute value of the ζ-potential for oxidized BC led to superior colloidal stability in water, and a 390 % increase in water retention. The oxidized BC hydrogel was also found to increase in water retention fivefold from pH 1 to 7, making it a smart hydrogel. The cationic and anionic BC hydrogels described here could be used for several biomedical applications, including self-assembling drug delivery devices. 相似文献
15.
Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells 总被引:1,自引:0,他引:1
We have synthesized a series of MCM-41-type mesoporous silica nanoparticles (MSN). The surface of the MSNs are functionalized with 3-aminopropyl (AP), 3-guanidinopropyl (GP), 3-[N-(2-guanidinoethyl)guanidino]propyl (GEGP), and N-folate-3-aminopropyl (FAP). In contrast to the zeta-potential of -18.4 mV for FITC-MSN, the values of zeta-potential for AP-, GP-, GEGP-, and FAP-functionalized FITC-MSNs in 100 mM PBS buffer (pH 7.4) increased positively from -11.3, -10.6, -4.0, to +4.9 mV, respectively. The uptake efficiency, endocytosis mechanism, and biocompatibility of these organically functionalized MSNs were investigated with human cervical cancer cells (HeLa). Flow cytometry results suggested that the endocytosis of MSN could be manipulated by different surface functionalization. The immunocytochemistry study indicated that the uptake of these MSNs by HeLa cells was surface functional group dependent and involved several different mechanisms of endocytosis. Confocal fluorescence micrographs showed that the different surface functionalities of MSNs could also affect their ability to escape endosomal entrapment, which is a key factor in designing effective intracellular delivery vehicles. 相似文献
16.
Characterization of covalent linkages in organically functionalized MCM-41 mesoporous materials by solid-state NMR and theoretical calculations 总被引:1,自引:0,他引:1
Wiench JW Avadhut YS Maity N Bhaduri S Lahiri GK Pruski M Ganapathy S 《The journal of physical chemistry. B》2007,111(15):3877-3885
The covalent linkages formed during functionalization of MCM-41 mesoporous molecular sieves with five chloroalkylsilanes ((EtO)3Si(CH2Cl), (MeO)3Si(CH2CH2CH2Cl), Cl3Si(CH2CH2CH3), Cl2Si(CH3)(CH2Cl) and Cl2Si(CH3)2) have been investigated using high-resolution solid-state NMR spectroscopy and DFT calculations. Structural information was obtained from 1H-13C and 1H-29Si heteronuclear (HETCOR) NMR spectra, in which high resolution in the 1H dimension was obtained by using fast MAS. The 1H-13C HETCOR results provided the assignments of 1H and 13C resonances associated with the surface functional groups. Sensitivity-enhanced 1H-29Si HETCOR spectra, acquired using Carr-Purcell-Meiboom-Gill refocusing during data acquisition, revealed the identity of 29Si sites (Qn, Tn, and Dn) and the location of functional groups relative to these sites. Optimal geometries of local environments representing the Qn, Tn and Dn resonances were calculated using molecular mechanics and ab initio methods. Subsequently, DFT calculations of 29Si, 13C, and 1H chemical shifts were performed using Gaussian 03 at the B3LYP/6-311++G(2d,2p) level. The theoretical calculations are in excellent accord with the experimental chemical shifts. This work illustrates that state-of-the-art spectroscopic and theoretical tools can be used jointly to refine the complex structures of inorganic-organic hybrid materials. 相似文献
17.
18.
The unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization
matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution
and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction
products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more
stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme
immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics,
and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of
these materials for bioanalytical applications and biosensor technology are also presented.
Figure Enzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes
place essentially in the silica micropores. 相似文献
19.
Qing-Zhou Zhai Wei-Hua Hu Bai-Liang Huang Chun-Yang Wang 《Journal of Sol-Gel Science and Technology》2012,63(3):435-444
Propranolol hydrochloride was incorporated into SBA-15 mesoporous material host by impregnation method to obtain host-guest nanocomposite material (SBA-15)-propranolol hydrochloride. By spectrophotometry, the amount of propranolol hydrochloride assembly was determined to be 382.05?mg/g (drug/SBA-15). Powder X-ray diffraction test results indicated that during the process of incorporation the framework of the molecular sieve was not destroyed and the molecular sieve still remained its structure ordering. Fourier transform infrared spectra showed that the framework of the prepared host-guest material was remained in good condition. Low-temperature nitrogen adsorption-desorption at 77?K results showed that the surface area and the pore volume of (SBA-15)-propranolol hydrochloride host-guest material decreased compared to those of the host molecular sieve, indicating that propranolol hydrochloride guest molecules have partially occupied the channels of the molecular sieve. Transmission electron microscopy and scanning electron microscopy results indicated that two-dimensional hexagonal mesoporous pore channels of the molecular sieve were retained and (SBA-15)-propranolol hydrochloride composite material remained fibrous crystals and the average diameter of sample was 336?nm. It was discovered in drug release principle in the simulated body fluid that the effective release time of the drug reached 30?h and the maximum cumulative released amount of propranolol hydrochloride was 99.3?%. When drug release time arrived at 5?h in the simulated gastric juice, the maximum cumulative released amount was 51.2?%.When drug release time arrived at 9?h in the simulated intestinal fluid, the maximum cumulative released amount was 70.1?%. The drug sustained release results showed that SBA-15 is a well-controlled drug release carrier. 相似文献
20.
Gang Wang 《Journal of solid state chemistry》2009,182(7):1649-1660
The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials’ relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of ∼2.7-3.3 nm and moderate to high surface areas up to ∼1000 m2/g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. 相似文献