首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
捷联惯性测量组合标定的仿真研究   总被引:10,自引:2,他引:8  
本对卡尔曼滤波在捷联惯性测量组合标定中的应用进行了研究,提出了一种辨识激光陀螺和加速度计静态误差的在线正交标定方案,并在不同滤波条件下了仿真验证,结果表明这是一种比较有效的误差标定方法。  相似文献   

2.
捷联惯性组合误差模型相关性分析方法   总被引:1,自引:0,他引:1  
在实际应用中通过捷联惯性组合误差模型可以将测量值转换成载体导航解算的需要量,而误差模型中的误差系数一般通过标定试验获得。以往认为误差模型中各误差系数相互独立,但通过实际计算可以发现并非如此。为了考量各系数相关性关系,提出了一种相关性分析方法。首先,提出了捷联惯组加速度计输出方程。之后,运用统计学的相关方法计算出了各系数的相关系数和协方差矩阵,并推导出了测量值和误差系数的分布特性之间的关系。最后,通过加速度计组合的实际测试,分别计算了不包含和包含拟合残差的统计数值。通过与输出值进行比对,验证了相关性分析方法的正确性,并表明拟合残差对于统计特性的计算具有重要作用。  相似文献   

3.
自适应卡尔曼滤波在惯性测量组合误差补偿中的应用   总被引:6,自引:0,他引:6  
惯性元件误差是捷联惯导系统的主要误差源,必须在导航过程中加以补偿。根据机动目标跟踪理论和惯性测量组合动态模型,分别建立状态方程和观测方程,利用机动频率自适应的算法进行卡尔曼滤波,以此达到惯性测量组合动态误差和随机误差补偿的目的。仿真结果说明该方法可行有效,优于传统的误差补偿算法,能较好地提高系统导航精度。  相似文献   

4.
无陀螺惯性测量组合研究现状概述   总被引:13,自引:4,他引:13  
无陀螺惯性测量技术是利用加速度计代替传统的陀螺,构成无陀螺惯性测量组合实现制导的。结合国内外的研究成果,对NGIMU的研究状况进行了总结。分析讨论了多种加速度计配置方案,评述了相应模型的优缺点。最后对未来的研究趋势进行了展望。  相似文献   

5.
微型惯性测量组合   总被引:15,自引:0,他引:15  
本文论述了惯性测量器件和组合的发展简史、机遇,选择微型惯性测量组合牵引我国微米/纳米技术发展的依据,以及采纳的技术路线。  相似文献   

6.
加速度计的交叉耦合对无陀螺惯性测量组合影响的研究   总被引:3,自引:1,他引:3  
研究了加速度计的交叉耦合系数的大小对惯性测量组合的影响,推导了存在交叉耦合系数的惯导方程,从方程中可以看出交叉耦合系数对导航精度的影响,最后通过仿真验证了这种影响。该的研究为无陀螺惯性测量组合的实际应用奠定了基础,并对加速度计的选用具有一定的指导意义。  相似文献   

7.
MEMS-IMU构型设计及惯性器件安装误差标定方法   总被引:3,自引:0,他引:3  
提出一种由三只单轴MEMS陀螺仪和三只单芯片双轴6个加速度计构成的MEMS-IMU配置方案。针对该方案的特点,研究了基于重力参考矢量对MEMS惯性器件安装误差的标定方法。该方法的关键是利用同一安装平面内的两个加速度计测量矢量的叉乘矢量的方向代替MEMS陀螺敏感轴方向,利用两轴或三轴角位置转台标定MEMS-IMU中惯性器件的安装误差。分析了标定矩阵的求逆条件数,提出了3位置和6位置的标定,指出了多位置标定中转台姿态角度的选择范围。新型MEMS-IMU配置方案及安装误差标定方法可有效解决MEMS-IMU惯性器件安装误差的标定与补偿问题。  相似文献   

8.
光纤陀螺仪在惯性测量组合中的应用分析   总被引:2,自引:0,他引:2  
介绍了闭环方案的干涉型光纤陀螺仪和捷联惯性测量组合。针对惯测组合的特定应用,分析了其面向的系统环境。通过对环境引入陀螺仪的误差项及其控制方案进行了具体分析和比对,提出了较优的应用方案和测试参数。采用该方案的惯性测量组合进行了充分实验和实际应用,证明了其可行性。  相似文献   

9.
一种新的激光陀螺惯性测量组合标定方法   总被引:4,自引:4,他引:4  
根据激光陀螺和石英加速度计的简化输出模型,推导并提出了一种新的激光陀螺惯性测量组合标定方法。该方法首先建立了一个与转台无关的机体坐标系,然后利用惯性测量组合绕6个不共面轴转动的输出值求解出激光陀螺的比例因子和安装方位;与此同时,根据6个转轴在竖直向上和竖直向下位置时的惯性测量组合输出值来确定加速度计在同一机体坐标系下的比例因子、安装方位和漂移。理论分析表明,与传统的标定方法不同,新方法对激光陀螺的标定结果受转台精度的影响较小,可以克服减震装置变形对激光陀螺标定的影响,从而实现中等精唐转合对惯性测量组合的高精唐标定。  相似文献   

10.
惯性器件温度误差补偿方法综述   总被引:11,自引:2,他引:11  
本文综述了国内外惯性器件温度误差补偿方法的研究现状,介绍了降低和补偿惯性器件温度误差的四种常用方法,提出了惯性器件温度误差补偿研究中亟待解决的问题,并指出了今后的研究方向。  相似文献   

11.
激光陀螺捷联惯导系统误差补偿技术   总被引:1,自引:0,他引:1  
结合工程实际应用,充分考虑激光陀螺捷联惯导系统的特性,重点分析了三种与系统动态运动相关的误差,包括尺寸效应误差、圆锥误差以及划船误差。从工程应用的角度出发,分别推导了尺寸效应误差补偿算法、圆锥误差补偿递推算法和划船误差补偿递推算法,并进行了大量的试验,对补偿效果进行了充分地验证。实验结果表明,补偿算法不增加导航计算机的负担,保证了系统在高动态条件下的精度,可以充分发挥激光陀螺的优势,提高激光陀螺捷联惯导系统的导航精度。  相似文献   

12.
捷联惯组射前工程化标定技术   总被引:1,自引:0,他引:1  
研究了捷联惯组射前标定技术,改进和优化了原有的射前标定方案。射前标定工程应用的关键是初始方位角的确定,这是分离陀螺仪误差系数的基础,精瞄结束后,可以获得弹体坐标系与参考坐标系之间确定的信息。利用精瞄信息,提出了反向导航法以解决射前标定中的初始方位角确定问题,解决了射前标定的工程化应用问题。提出了迭代算法,减小了历次测试结果对射前标定精度的影响,提高了射前标定的精度。精度分析和试验结果分析表明本文所研究的射前标定方案及相关算法能够满足其工程化应用的要求。  相似文献   

13.
光纤陀螺惯性测量组合的数字温控系统设计   总被引:1,自引:1,他引:1  
光纤陀螺惯性测量组合的测量精度会受到环境温度变化的影响。采用温度控制手段能够有效解决这一问题。提出了一种基于分级控制、分段控制和闭环控制思想的温控方案,并在此基础上设计了一种DSP+FPGA架构的数字温度控制电路,实现了温控电路的整体结构和工作流程,说明了以FuzzyPID算法为核心的温度控制算法原理。试验结果表明,系统具有速度快、精度高等优点,为解决惯性测量组合启动后缩短惯性器件热平衡过程,迅速进入稳定工作状态提供了一种实用方法,也为类似的惯性测量组合温度控制系统提供了有益参考。  相似文献   

14.
针对激光陀螺惯性测量组件在传统的分立式标定中受橡胶减震器影响的问题,从系统的角度对激光陀螺惯性测量组件的标度因数误差、安装误差传播规律进行分析。通过分别绕三只陀螺敏感轴转动激发激光陀螺的标度因数误差、安装误差,通过三只加速度计敏感轴分别指天激发加速度计的标度因数误差、安装误差和零位,从而完成激光陀螺惯性测量组件的系统级标定。在未进行温控及温补的情况下,陀螺仪标度因数误差重复性在3.5×10~(-6)以内,安装误差重复性在3″以内,加速度计标度因数误差和零位在其性能指标内,安装误差在4.5″以内。试验结果表明,该方法满足高精度、长期稳定性好的惯导系统工程应用要求。  相似文献   

15.
以柔性材料和高精度六面体作为惯性传感器的安装载体和基准,设计了一种免装配、安装误差小、体积小、功耗低且便于标定的微惯性测量单元。给出了安装误差小角度前提下的传感器的测量方程和标定方法;利用微控制器的并行工作机制,提出了一种快速有效的基于均值滤波和FIR滤波的组合滤波方案。实验结果表明:MIMU可以100 Hz的频率更新测量输出,加速度测量噪声小于2.5 mg、测量误差小于0.8 mg,旋转角速度测量噪声小于0.15 o/s、测量误差小于0.2 o/s,可满足微小型惯性导航系统的功耗、体积、测量精度和响应速度的应用需求。  相似文献   

16.
旋转式光纤捷联惯导系统的误差效应研究关乎系统的设计和精度的提高.在建立惯性元件误差模型的基础上,分析了系统的旋转调制原理,推导了惯性元件的零偏、安装误差、标度因数误差和随机误差在单轴单方向旋转下产生的误差效应,仿真研究了转速大小对系统精度的影响.结果表明,旋转调制可以有效补偿与转动轴垂直方向惯性元件的零偏,且转速越大效果越好;旋转调制会引入额外的标度因数误差效应,且转速越大误差越大.在设计旋转式捷联惯导系统时,要求惯性元件的标度因数误差和安装误差尽可能小,并且转速不宜过大,采取正反旋转相结合的方式可以取得更显著的误差补偿效果.  相似文献   

17.
六加速度计无陀螺惯导系统误差随时间发散比较严重。为了有效提高导航系统精度,提出了一种单陀螺仪多加速度计(五加速度计)的捷联惯性导航解算方法。该导航解算方法通过合理配置5个加速度计和1个陀螺仪,可不经积分而直接解算角速度,完全消除了加速度计输出方程中角加速度项的影响,能使在姿态和位置解算时分别减少1次积分,从而有效抑制误差随时间发散。给出了单陀螺多加速度计捷联惯导姿态和位置解算原理的理论推导过程,并对该导航解算方法进行了仿真。在仿真时间为80 s时,与无陀螺惯导相比,该方法的姿态解算和位置解算精度均提高了60%以上。  相似文献   

18.
基于长期变形、动态挠曲变形以及陀螺随机零偏的状态方程,构建了激光陀螺测量的惯性姿态匹配最优滤波器,可以实时地估计出船体变形角。针对实时估计的长期变形角具有偏置误差的问题,推导了惯性姿态匹配的误差方程,指出动态挠曲变形角与船体惯性姿态角之间具有长时间的交叉相关耦合作用导致了长期变形角估计具有偏置误差,并提出了对输入到最优滤波器的激光陀螺角增量进行自适应补偿的方法来抑制偏置误差。实验结果表明,补偿后俯仰角、横滚角和艏挠角的偏置误差均方根均小于5″,较补偿前降低均方根误差约为5″,该自适应补偿方法可有效地抑制偏置误差,提高惯性姿态匹配方法在船体变形测量应用中的有效性。  相似文献   

19.
针对温度变化引起的惯导系统中石英挠性加速度计测量误差,提出了一种基于比力差分测量的加速度计温度误差补偿方法。首先,建立包含温变速率影响的温度误差模型,利用标定惯导系统加速度计参数时的温度作为标定参数温度基准。其次,借助不带转台的温箱对惯导系统进行全温测试,通过同一方位前后时间段加速度计输出的差分消除未知的比力真值,只保留由于温度改变引起的标度因数与零偏变化,通过多位置观测对这两项参数进行最小二乘拟合估计,获得对应温度系数。该方法不需要温箱具备高精度定位基准,能够实现全温范围与快速变温工作条件下温度误差的精确建模。试验结果表明,应用该补偿方法可使加速度计测量精度在全温范围内保持在10μg量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号