首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
In the present work we introduced two MRI rotating frame relaxation methods, namely adiabatic T and Relaxation Along a Fictitious Field (RAFF), along with an inversion-prepared Magnetization Transfer (MT) protocol for assessment of articular cartilage. Given the inherent sensitivity of rotating frame relaxation methods to slow molecular motions that are relevant in cartilage, we hypothesized that adiabatic T and RAFF would have higher sensitivity to articular cartilage degradation as compared to laboratory frame T2 and MT. To test this hypothesis, a proteoglycan depletion model was used. Relaxation time measurements were performed at 0 and 48 h in 10 bovine patellar specimens, 5 of which were treated with trypsin and 5 untreated controls were stored under identical conditions in isotonic saline for 48 h. Relaxation times measured at 48 h were longer than those measured at 0 h in both groups. The changes in T2 and MT relaxation times after 48 h were approximately 3 times larger in the trypsin treated specimens as compared to the untreated group, whereas increases of adiabatic T and RAFF were 4 to 5 fold larger. Overall, these findings demonstrate a higher sensitivity of adiabatic T and RAFF to the trypsin-induced changes in bovine patellar cartilage as compared to the commonly used T2 and MT. Since adiabatic T and RAFF are advantageous for human applications as compared to standard continuous-wave T methods, adiabatic T and RAFF are promising tools for assessing cartilage degradation in clinical settings.  相似文献   

3.
Molecular dynamics simulations have been carried out for small water clusters (N=16, 32, 64) in a d.c. electric field at T=200 K. It was shown that for relatively weak fields, there was a significant decrease of reorientational and structural relaxation times for all cluster sizes examined. Regarding the molecular reorientational motions, in the strong field regime, a decoupling of tumbling and spinning librations was observed. Reorientational relaxation times of the dipole and vector joining the two hydrogen atoms were found to follow different relaxation laws, with the former decreasing and the latter increasing with electric field increase. These trends were qualitatively explained by invoking the Debye model with field-dependent friction for dipole librations and the symmetric double-well for spinning rotations on a plane perpendicular to the field axis. Finally, the interdependence of the reorientation on the translational modes of the cluster was indicated, with the translationally slow molecules being rotationally slow as well and vice versa.  相似文献   

4.
Proton spin-lattice and spin-spin relaxation times have been measured in surgically-removed normal CNS tissues and a variety of tumors of the brain. All measurements were made at 20 MHz and 37 degrees C. Between grey and white matter from autopsy human or canine specimens significant differences in T1 or T2 were observed, with greater differences seen in T1. Such discrimination was reduced in samples obtained from live brain-tumor patients due to lengthening in T1 and T2 of white matter near tumorous lesions. Edematous white matter showed T1 and T2 values higher than those of autopsy disease-free white matter. Compared to normal CNS tissues, most brain tumors examined in this study demonstrated elevated T1 and T2 values. Exceptions, however, did exist. No definitive correlation was indicated on a T1 or T2 basis which allowed a distinction to be made between benign and malignant states. Furthermore, considerable variation in relaxation times occurred from tumor to tumor of the same type, suggesting that within a tumor type there are important differences in physiology, biology, and/or pathologic state. Such variation caused partial overlap in relaxation times among certain tumor types and hence may limit the capability of magnetic resonance imaging (MR) alone for the diagnosis of specific disease. Nonetheless, this study predicts that on the basis of T1 or T2 differences most brain tumors are readily detectable by MR via saturation recovery or inversion recovery with appropriate selections of pulse-spacing parameters. In general, tumors can be discriminated against white matter better than grey matter and contrast between glioma and grey matter is usually superior to that between meningioma and grey matter. This work did not consider tissue-associated proton density which should be addressed together with T1 and T2 for a complete treatment of MR contrast.  相似文献   

5.
Proton nuclear magnetic resonance relaxation times, T1 and T2, of water in unfixed gray and white matter from normal and edematous rabbit brain tissues were measured in vitro at 23°C and 100 MHz to evaluate the effects of the temperature (?25°C to 37°C) and duration (0 to 96 h) of tissue storage on relaxation times. T1 and T2 tended to decrease during storage, probably from slow dehydration of the tissue. This effect was greatest in tissues stored at 37°C and least in those stored at 4 and ?25°C; decreases in T1 and T2 were greater in white matter than in gray matter. Freezing brain tissue to ?25°C caused a sudden decrease in the T2 of normal white matter. Relaxation times were constant for 5 h in tissues stored at 23°C and for 40 h at 4°C. These results correlated well with corresponding tissue water loss.  相似文献   

6.
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The temperature T variation of the normalized magnetization relaxation rate S in high-temperature superconductors (HTS) with strong vortex pinning exhibits a maximum in the low-T range. This was reported for various HTS, and the origin of the faster relaxation at low T appearing in standard magnetization relaxation measurements was usually related to specific pinning properties of the investigated specimens. Since the observed behaviour seems to be characteristic to all HTS with enhanced pinning (generated by random and/or correlated disorder), we show that the S(T) maximum can be explained in terms of classic collective vortex creep. The influence of thermo-magnetic instabilities in the low-T range is also evidenced. The collective (elastic) creep regime is generated by the T dependent macroscopic currents induced in the sample during standard magnetization measurements.  相似文献   

8.
ABSTRACT

1H spin–lattice relaxation experiments have been performed for triphenylbismuth dissolved in fully deuterated glycerol and tetrahydrofuran. The experiments have been carried out in a broad frequency range, from 10?kHz to 40?MHz, versus temperature. The data have been analysed in terms of a relaxation model including two relaxation pathways: 1H-1H dipole–dipole interactions between intrinsic protons of triphenylbismuth molecule and 1H-2H dipole–dipole interactions between the solvent and solute molecules. As a result of the analysis, rotational correlation times of triphenylbismuth molecules in the solutions and relative translational diffusion coefficient between the solvent and solute molecules have been determined. Moreover, the role of the intramolecular 1H-1H relaxation contribution has been revealed, depending on the motional parameters, as a result of decomposing the overall relaxation dispersion profile into contributions associated with the 1H-1H and 1H-2H relaxation pathways. The possibility of accessing the contribution of the relaxation of the intrinsic protons is important from the perspective of exploiting Quadrupole Relaxation Enhancement effects as possible contrast mechanisms for Magnetic Resonance Imaging.  相似文献   

9.
The purpose of this study was to demonstrate a generalized equation for describing the magnetization in spoiled gradient-echo (SPGR) imaging in which the in-pulse relaxation and magnetization transfer (MT) effects are taken into account. First, the time-dependent Bloch equations for the two-pool exchange model with MT effect were reduced to an inhomogeneous linear differential equation, and then a simple equation was derived to solve it using a matrix operation. Second, the equations describing the magnetization before and after the radiofrequency (RF) pulse were derived based on the above solution for the RF-pulse excitation and evolution phases. Finally, a generalized equation describing the steady-state magnetization was derived. The validity of this equation was investigated by comparing with the transverse magnetization obtained by the regular Ernst equation and analytical solution in which the in-pulse transverse relaxation is considered. When the same assumption was made in our method, there were good agreements between them, indicating the validity of our method. The in-pulse transverse and longitudinal relaxations decreased the transverse magnetization compared to the case in which these effects were neglected, whereas MT increased it. In conclusion, we derived a generalized equation for describing the magnetization in SPGR imaging. This equation will provide a suitable basis for understanding the signal intensity in SPGR imaging and/or T1 measurement using an SPGR sequence in cases in which the effect of in-pulse relaxation and/or MT cannot be neglected.  相似文献   

10.
Results of the preliminary study on the evaluation of the role of magnetization transfer imaging (MTI) of prostate in men who had raised prostate-specific antigen (PSA) (>4 ng/ml) or abnormal digital rectal examination (DRE) are reported. MT ratio (MTR) was calculated for 20 patients from the hyper- (normal) and hypo-intense regions (area suspicious of malignancy as seen on T2-weighted MRI) of the peripheral zone (PZ) and the central gland (CG) at 1.5 T. In addition, MTR was calculated for three healthy controls. Mean MTR was also calculated for the whole of the PZ (including hyper- and hypo-intense area) in all patients. Out of 20 patients, biopsy revealed malignancy in 12 patients. Mean MTR value (8.29+/-3.49) for the whole of the PZ of patients who were positive for malignancy on biopsy was statically higher than that observed for patients who were negative for malignancy (6.18+/-3.15). The mean MTR for the whole of the PZ of controls was 6.18+/-1.63 and is similar to that of patients who were negative for malignancy. Furthermore, for patients who showed hyper- (normal portion) and hypo-intense (region suspicious of malignancy) regions of the PZ, the MTR was statistically significantly different. These preliminary results reveal the potential role of MT imaging in the evaluation of prostate cancer.  相似文献   

11.
The interaction of a soluble Melanin Free Acid (MFA) from Sepia melanin with Mn2+ ions is investigated by measuring the proton water relaxation rates. The similarity between MFA and the parent melanin is assessed by means of their high resolution 13C cross polarization magic angle spinning NMR spectra. The observed marked increase in longitudinal proton relaxation rates and the characteristic 1/T1 NMRD profile are associated to the formation of a macromolecular metal complex. The presence of similar paramagnetic species is expected to cause the high contrast shown by melanotic tissues in MRI.  相似文献   

12.
尹辑文  李伟萍  李红娟  于毅夫 《中国物理 B》2017,26(1):17201-017201
Within the frame of the Pavlov–Firsov spin–phonon coupling model, we study the spin-flip assisted by the acoustical phonon scattering between the first-excited state and the ground state in quantum dots. We analyze the behaviors of the spin relaxation rates as a function of an external magnetic field and lateral radius of quantum dot. The different trends of the relaxation rates depending on the magnetic field and lateral radius are obtained, which may serve as a channel to distinguish the relaxation processes and thus control the spin state effectively.  相似文献   

13.
An intriguing phenomenon on enhancement of the relaxation rates and chemical shift of two typical magnetic resonance imaging (MRI) contrast agents based on gadolinium complex is observed. The relaxation enhancement or chemical shift change depends on the size of the molecule where the imaged nuclear species is located: the small molecules show a perfect linear relationship between the concentration and the relaxation enhancement or chemical shift change while for macromolecules pronounced nonlinearity is observed. The phenomenon is also confirmed with real images of a macromolecular sample. A quantitative theoretical interpretation of the phenomenon is proposed and the significance of this phenomenon to MRI of materials and biological systems is discussed.  相似文献   

14.
Several single-scan experiments for the measurement of the longitudinal relaxation time (T1) are proposed. These experiments result in fast and accurate determinations of the relaxation rate, are relatively robust to pulse imperfections, and preserve information about the chemical shift. The method used in these experiments is to first encode the T1 values as a spatial variation of the magnetization and then to read out this variation either by applying a weak gradient during acquisition or by sequentially observing different slices of the sample. As a result, it is possible to reduce the time necessary to determine the T1 values by one or two orders of magnitude. This time saving comes at the expense of the signal-to-noise level of the resulting spectrum and some chemical shift resolution.  相似文献   

15.
ABSTRACT

1H spin–lattice relaxation studies of water solutions of Bismuth-ethylenediamine-tetraacetic acid (Bi-EDTA), Bismuth-ethylenediamine-tetrakis(methylenephosphonic) acid (Bi-EDTP), Bismuth-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Bi-DOTA), Bismuth-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid) (Bi-DOTP) and Bismuth-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (Bi-DO3A) have been performed in order to compare Quadrupole Relaxation Enhancement (QRE) effects with Paramagnetic Relaxation Enhancement (PRE) from the perspective of exploiting the first one as a novel contrast mechanism for Magnetic Resonance Imaging (MRI). The selected compounds can be considered as 209Bi counterparts of Gd3+ complexes. The relaxation experiments have been performed in a broad frequency range of 5?kHz–30?MHz. The relaxation contribution associated with QRE has been extracted from the data and compared with PRE. Similarities and differences between the two effects have been discussed.  相似文献   

16.
Magnetization transfer between bound and free protons was used as a source of contrast in high speed MR imaging using the FLASH technique. Contrast in FLASH MR images was found to depend upon the reduced magnetization and the spin lattice relaxation rate of free protons in the presence of bound proton radio-frequency saturation. MTC FLASH imaging was thus used to estimate the variation with saturation frequency of free proton spin-lattice relaxation during magnetization transfer.  相似文献   

17.
The objective was to measure the effect of 100% oxygen inhalation on T1 relaxation times in skeletal muscle. Healthy volunteers were scanned using three different MRI protocols while breathing medical air and 100% oxygen. Measurements of T1 were made from regions of interest (ROIs) within various skeletal muscle groups. Dynamic data of subjects breathing a sequence of air-oxygen-air allowed the calculation of characteristic wash-in and -out times for dissolved oxygen in muscle. Contrary to previous findings, a statistically significant decrease in T1 in skeletal muscle was observed due to oxygen inhalation. We report approximate baseline characteristic values for the response of skeletal muscle to oxygen inhalation. This measurement may provide new biomarkers for evaluation of oxygen delivery and consumption in normal and diseased skeletal muscle.  相似文献   

18.
B S Sarma  J Ramakrishna 《Pramana》1986,26(3):263-268
Internal motions of the protonic groups have been studied in polycrystalline [(CH3)4N]2HgBr4 and [(CH3)4N]2HgI4 from the temperature dependence of proton spin relaxation time (T 1) and the data analysed according to the spin lattice relaxation model due to Albert and coworkers. The temperature dependence ofT 1 in the above compounds is compared with that in (TMA)2HgCl4 and (TMA)2ZnCl4.  相似文献   

19.
The dielectric relaxation measurements on binary mixtures of 2-methoxyethanol with water have been carried out over entire concentrations and at temperature range of 0 °C to 25 °C using a picosecond time domain reflectometry technique. The complex dielectric permittivity spectra of 2-methoxyethanol/water mixtures were fitted using Havriliak-Negami equation. The static dielectric constant and relaxation time for all concentrations were obtained using least square fit method. The principal relaxation time is small if compared to that of corresponding alcohol/water mixtures this may be due to the hydrogen bonding ether oxygen in the 2-ME-water system. Excess dielectric properties, Kirkwood correlation factor, thermodynamic properties and Bruggeman factor are also determined and the results are interpreted in terms of heterogeneous interactions among the unlike molecules due to hydrogen bonding.  相似文献   

20.
We study the energy relaxation process in one-dimensional (1D) lattices with next-nearest-neighbor (NNN) couplings. This relaxation is produced by adding damping (absorbing conditions) to the boundary (free-end) of the lattice. Compared to the 1D lattices with on-site potentials, the properties of discrete breathers (DBs) that are spatially localized intrinsic modes are quite unusual with the NNN couplings included, i.e. these DBs are mobile, and thus they can interact with both the phonons and the boundaries of the lattice. For the interparticle interactions of harmonic and Fermi–Pasta–Ulam–Tsingou-β (FPUT-β) types, we find two crossovers of relaxation in general, i.e. a first crossover from the stretched-exponential to the regular exponential relaxation occurring in a short timescale, and a further crossover from the exponential to the power-law relaxation taking place in a long timescale. The first and second relaxations are universal, but the final power-law relaxation is strongly influenced by the properties of DBs, e.g. the scattering processes of DBs with phonons and boundaries in the FPUT-β type systems make the power-law decay relatively faster than that in the counterparts of the harmonic type systems under the same coupling. Our results present new information and insights for understanding the slow energy relaxation in cooling the lattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号