首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have recently introduced double-quantum homonuclear correlation NMR experiment for half-integer quadrupolar nuclei in solids, which was based on rotary resonance recoupling [J. Chem. Phys. 120 (2004) 2835]. In this contribution we show on two 23Na (I=3/2) containing samples, Na2SO4 and Na2HPO4, that the efficiency of the experiment can be substantially enhanced by adding rotor assisted population transfer (RAPT) and Carr-Purcell-Meiboom-Gill (CPMG) sequences to it. We also present an upgraded two-dimensional experiment, in which double- and six-quantum coherences are correlated during t1 evolution period, yielding a high-resolution isotropic spectrum along an indirectly detected dimension. The sensitivity of the upgraded experiment is, however, greatly reduced compared to the sensitivity of the original experiment, so that its application is feasible only when RAPT and CPMG can be used as well.  相似文献   

2.
Double-rotation (DOR) is the only technique generally capable of yielding high-resolution NMR spectra of half-integer quadrupolar nuclei in one dimension for solids without the need for sophisticated coherence pathway selection. Unfortunately, due to the low outer rotor spinning frequencies currently available, the spectra often contain a large number of spinning sidebands which may overlap with the resonances of interest. We implement a simple, robust, and easy to use family of pulse sequences, which in practice are fully analogous to the 'total suppression of sidebands' (TOSS) sequences, to suppress all sidebands arising from the spinning of the outer rotor in DOR experiments. By removing the rotor phase dependence of the evolution of the sidebands, the sidebands destructively interfere with one another during the course of signal averaging to yield 'solution-like' spectra of half-integer quadrupolar nuclei in solids. Advantages and shortcomings of the method compared to other DOR sideband suppression methods are explored with the aid of simulations.  相似文献   

3.
We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their applicability. This is demonstrated by (27)Al 3QMAS experiments on 9Al(2)O(3). 2B(2)O(3) and the mineral andalusite. In the latter compound, Al experiences a quadrupolar-coupling constant of 15.3 MHz in one of the sites. Finally a 5QMAS spectrum on 9Al(2)O(3). 2B(2)O(3) demonstrates the sensitivity enhancement of this experiment using a double frequency sweep.  相似文献   

4.
Although high-resolution NMR spectra can be obtained in solids, the use of27Al NMR to investigate the structure of aluminosilicate and aluminophosphate molecular sieves has been severely limited because anisotropic second-order quadrupolar interactions, responsible for spectral broadening, cannot be eliminated by conventional magic angle spinning (MAS) or multiple pulse techniques. Here we give the principles of the double rotation (DOR) NMR technique which can remove not only the first-order broadenings but also the second-order broadenings in the NMR spectra of quadrupolar nuclei in solids. High-resolution27Al NMR using DOR is capable of resolving discrete framework aluminum sites in aluminophosphate molecular sieves, permitting quantitative investigation of site-specific adsorbate-host interactions, and of discriminating different aluminum species in zeolites.  相似文献   

5.
The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites.  相似文献   

6.
Multiple-quantum magic-angle spinning experiment removes second-order quadrupolar broadening from the central-transition of half-integer quadrupolar nuclei. This paper presents a novel scheme to enhance the sensitivity of MQMAS using signals from multiple coherence transfer pathways. The enhancement can be obtained in two ways. The first method uses the multiplex phase cycling to acquire MQMAS spectra from various coherence transfer pathways simultaneously. An addition of spectra collected with no extra time enhances the efficiency of the experiment. The second method, soft-pulse-added-mixing, is designed based on a complete alias of coherence transfer pathways. By properly fixing the soft-pulse phase, signals from various coherence transfer pathways can add constructively resulting higher signal intensities. The two methods are demonstrated for sensitivity enhancement with samples of spin-3/2 and 5/2.  相似文献   

7.
Determination of NMR interaction parameters from double rotation NMR   总被引:1,自引:1,他引:0  
It is shown that the anisotropic NMR parameters for half-integer quadrupolar nuclei can be determined using double rotation (DOR) NMR at a single magnetic field with comparable accuracy to multi-field static and MAS experiments. The (17)O nuclei in isotopically enriched l-alanine and OPPh(3) are used as illustrations. The anisotropic NMR parameters are obtained from spectral simulation of the DOR spinning sideband intensities using a computer program written with the GAMMA spin-simulation libraries. Contributions due to the quadrupolar interaction, chemical shift anisotropy, dipolar coupling and J coupling are included in the simulations. In l-alanine the oxygen chemical shift span is 455 +/- 20 ppm and 350 +/- 20 ppm for the O1 and O2 sites, respectively, and the Euler angles are determined to an accuracy of +/- 5-10 degrees . For cases where effects due to heteronuclear J and dipolar coupling are observed, it is possible to determine the angle between the internuclear vector and the principal axis of the electric field gradient (EFG). Thus, the orientation of the major components of both the EFG and chemical shift tensors (i.e., V(33) and delta(33)) in the molecular frame may be obtained from the relative intensity of the split DOR peaks. For OPPh(3) the principal axis of the (17)O EFG is found to be close to the O-P bond, and the (17)O-(31)P one-bond J coupling ((1)J(OP)=161 +/- 2 Hz) is determined to a much higher accuracy than previously.  相似文献   

8.
A theory of dynamic angle spinning (DAS) and double rotation (DOR) NMR is described using average Hamiltonian and irreducible tensor methods. Sideband intensities in DAS and DOR spectra are analyzed by both the moment and Bessel function methods, and general formulae are derived. Results show that the DAS moments depend on the relative rotor phase between the first and the second evolution periods, whereas the second and third DOR moments are independent of the relative phase between the inner and outer rotors. Sideband intensities in DAS spectra also depend on the relative rotor phases between evolution at the first and second angles, as well as on the ratio of time spent at each angle. Sideband intensities and phases in DOR spectra are related to the relative rotor phases between the inner and outer rotors, and the sideband pattern is determined by the ratio of the inner and outer rotor spinning speeds. An inversion symmetry of the odd numbered DOR sidebands at the relative rotor phase gamma r = 0 degree, 180 degrees permits the elimination of these sidebands. Finally, numerical simulations are implemented and shown to agree with experimental results. Quadrupolar parameters can therefore be recovered either by calculating the second and third moments or by simulating the sideband intensities and phases.  相似文献   

9.
Residual dipolar couplings between spin-1/2 and quadrupolar nuclei are often observed and exploited in the magic-angle spinning (MAS) NMR spectra of spin-1/2 nuclei. These orientation-dependent splittings contain information on the dipolar interaction, which can be translated into structural information. The same type of splittings may also be observed for pairs of quadrupolar nuclei, although information is often difficult to extract from the quadrupolar-broadened lineshapes. Here, the complete theory for describing the dipolar coupling between two quadrupolar nuclei in the frequency domain by Hamiltonian diagonalization is given. The theory is developed under MAS and double-rotation (DOR) conditions, and is valid for any spin quantum numbers, quadrupolar coupling constants, asymmetry parameters, and tensor orientations at both nuclei. All terms in the dipolar Hamiltonian become partially secular and contribute to the NMR spectrum. The theory is validated using experimental 11B and 35/37Cl NMR experiments carried out on powdered B-chlorocatecholborane, where both MAS and DOR are used to help separate effects of the quadrupolar interaction from those of the dipolar interaction. It is shown that the lineshapes are sensitive to the quadrupolar coupling constant of both nuclei and to the J coupling (including its sign). From these experiments, the dipolar coupling constant for a heteronuclear spin pair of quadrupolar nuclei may be obtained as well as the sign of the quadrupolar coupling constant of the perturbing nucleus; these are two parameters that are difficult to obtain experimentally otherwise.  相似文献   

10.
The homonuclear and heteronuclear residual dipolar couplings in elastomers reflect changes in the cross-link density, temperature, the uniaxial and biaxial extension or compression as well as the presence of penetrant molecules. It is shown theoretically that for an isolated methyl group the relative changes in the intensity of the homonuclear double-quantum buildup curves in the initial time regime due to variation of the residual dipolar coupling strength is less sensitive than the changes in the triple-quantum filtered NMR signal when considering the same excitation/reconversion time. For a quadrupolar nucleus with spin I=2 the sensitivity enhancement was simulated for four-quantum, triple-quantum, and double-quantum buildup curves. In this case the four-quantum build-up curve shows the highest sensitivity to changes of spin couplings. This enhanced sensitivity to the residual dipolar couplings was tested experimentally by measuring 1H double-quantum, triple-quantum, and four-quantum buildup curves of differently cross-linked natural rubber samples. In the initial excitation/reconversion time regime, where the residual dipolar couplings can be measured model free, the relative changes in the intensity of the four-quantum buildup curves are about five times higher than those of the double-quantum coherences. For the first time proton four-quantum coherences were recorded for cross-linked elastomers.  相似文献   

11.
27Al double rotation (DOR) NMR spectroscopy has been applied to investigate the framework ordering in the aluminophosphate molecular sieve AlPO4-8 during the hydration process. Relative well-resolved peaks in the DOR spectra of both dehydrated and successively rehydrated AlPO4-8 allow the isotropic shifts and the quadrupolar shifts to be correlated with the local framework structure. The rather complex interaction of water with AlPO4-8 occurs in a specific way, not randomly. For dehydrated AlPO4-8 efforts are shown to correlate respectively the isotropic shifts to the mean Al-O-P angles and the quadrupolar coupling constants to the shear strains of the different aluminium sites.  相似文献   

12.
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy.  相似文献   

13.
A general theory of field dependent spin-lattice relaxation for nuclei of the spin quantum number 1/2 (1H, 19F, 13C) caused by dipole-dipole interactions with neighboring quadrupolar nuclei (nuclei possessing a quadrupolar moment) is presented. The theory is valid for arbitrary motional conditions and should be treated as a quadrupolar counterpart of the paramagnetic relaxation enhancement theory. When the energy level splitting of the dipolar spin (I=1/2) matches one of the transition frequencies of the quadrupolar nuclei one can observe a local enhancement of the dipolar spin relaxation (referred to as "quadrupolar peaks"). To see such effects the dynamics modulating the spin interactions has to be relatively slow. This brings the system beyond the validity range of perturbation approaches and requires the stochastic Liouville equation to be applied. The presented theory describes the quadrupolar relaxation enhancement (QRE) for an arbitrary spin quantum number of the quadrupolar nuclei and includes the asymmetry of the quadrupolar coupling. It has been applied to interpret the shape of magnetization curves (amplitude of 1H magnetization versus magnetic field) for the molecular crystal [C3N2H5]6[Bi4Br18] ([C3N2H5]-imidazolium). The magnetization curves show several dips (local minima) attributed to 1H-14N quadrupolar relaxation enhancement effects. In addition, as a limiting case a perturbation approach to QRE has been presented and its validity conditions have been discussed.  相似文献   

14.
A high resolution two-dimensional solid state NMR experiment is presented that correlates half-integer quadrupolar spins with protons. In this experiment the quadrupolar nuclei evolve during t1 under a split-t1, FAM-enhanced MQMAS pulse scheme. After each t1 period ending at the MQMAS echo position, single quantum magnetization is transferred, via a cross polarization process in the mixing time, from the quadrupolar nuclei to the protons. High-resolution proton signals are then detected in the t2 time domain during wPMLG5* homonuclear decoupling. The experiment has been demonstrated on a powder sample of sodium citrate and 23Na-1H 2D correlation spectra have been obtained. From the HETCOR spectra and the regular MQMAS spectrum, the three crystallographically inequivalent Na+ sites in the asymmetric unit were assigned. This MQMAS-wPMLG HETCOR pulse sequence can be used for spectral editing of half-integer quadrupolar nuclei coupled to protons.  相似文献   

15.
16.
A sensitivity enhancement method based on selective adiabatic inversion of a satellite transition has been employed in a (pi/2)CT-(pi)ST1-(pi/2)CT spectral editing sequence to both enhance and resolve multisite NMR spectra of quadrupolar nuclei. In addition to a total enhancement of 2.5 times for spin 3/2 nuclei, enhancements up to 2.0 times is reported for the edited sites in a mixture of rubidium salts.  相似文献   

17.
Using a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quantum z-filtered pulse sequence and subsequently sheared along both the ν1 and ν2 dimensions. The application of this method is demonstrated for both crystalline (RbNO3) and amorphous samples (vitreous B2O3). The existence of the two rubidium isotopes (85Rb and 87Rb) allows comparison of results for two nuclei with different spins (I = 3/2 and 5/2), as well as different dipole and quadrupole moments in a single chemical compound. Being only limited by homogeneous line broadening and sample crystallinity, linewidths of approximately 0.1 and 0.2 ppm can be measured for 87Rb in the quadrupolar and chemical shift dimensions, enabling highly accurate determination of the isotropic chemical shift and the quadrupolar product, PQ. For vitreous B2O3, the use of MQDOR allows the chemical shift and electric field gradient distributions to be directly determined—information that is difficult to obtain otherwise due to the presence of second-order quadrupolar broadening.  相似文献   

18.
The quadrupolar phase-adjusted spinning sidebands (QPASS) pulse sequence has been recently demonstrated as a useful method for obtaining quadrupolar parameters with magic-angle spinning NMR. The sequence separates spinning sidebands by order in a two-dimensional experiment. A sheared projection of the 2D spectrum effectively yields the infinite spinning rate second-order quadrupolar powder pattern, which can be analyzed to determine quadrupolar coupling constants and asymmetry parameters. The RF power and spinning speed requirements of the original QPASS sequence make it an experimentally demanding technique. A new version of the sequence is demonstrated here and is shown to alleviate many problems associated with the original sequence. New solutions to the determining equations, based on the use of multiple rotor cycles in the QPASS sequence, lead to longer delays between the nine π pulses, provide less chance of pulse overlap, and allow for use of weaker RF field strengths that excite only the central quadrupolar transition. A three-rotor-cycle version of the new experiment is demonstrated on the 139La nucleus.  相似文献   

19.
We present a set of homonuclear correlation experiments for half-integer quadrupolar spins in solids. In all these exchange-type experiments, the dipolar interaction is retained during the mixing time by spinning the sample at angles other than the “regular magic angle” (54.7°). The second-order quadrupolar interaction is averaged by different strategies for the different experiments. The multiple-quantum off magic angle spinning (MQOMAS) exchange experiment is essentially a regular MQMAS experiment where the quadrupolar interaction is averaged by combining magic angle spinning with a multiple- to single-quantum correlation scheme. The sample is spun at the magic angle at all times except during the mixing time which is added to establish homonuclear correlation. In the multiple-quantum P4 magic angle spinning (MQP4MAS) exchange experiment, the sample is spun at one of the angles at which the fourth-order Legendre polynomial vanishes (P4 magic angle), the remaining second-order quadrupolar interaction now governed by a second-rank tensor is refocussed by the multiple to single-quantum correlation scheme. In the dynamic angle spinning (DAS) exchange experiment, the second-order quadrupolar interaction is averaged by correlating the evolution from two complementary angles. These experiments are demonstrated and compared, in view of their specific advantages and disadvantages, for 23Na in the model compound Na2SO3.  相似文献   

20.
The rotor assisted population transfer (RAPT) sequence is used to enhance the sensitivity of the RIACT(II) experiment for spin-3/2 quadrupolar nuclei. A detailed theoretical analysis of the polarizations that contribute to different types of MQ-MAS experiments is provided. In particular, two polarization pathways are distinguished for the creation of triple-quantum coherence. The existence of these pathways is experimentally demonstrated by comparing the sensitivities of different sequences with and without RAPT preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号