首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以纳米氧化铝粉和微米C粉为原料,通过碳热还原法合成AlON粉体,经无压烧结制备了AlON透明陶瓷,并对其微观组织、力学、热学和光学等性能进行了表征.结果表明:1875℃×24 h条件下无压烧结制备了平均晶粒尺寸为110 ~120 μm的AlON透明陶瓷,其室温抗弯强度为(275±25) MPa,室温比热容和导热系数分别为0.781 J/(g·K)和12.3 W/(m·K),该样品(1 mm厚)在1000 ~ 5000 nm波长范围内的直线透过率在80;左右,在3.93μm波长处光学透过率最高可达83.7;.  相似文献   

2.
以Y2O3粗粉、Nd2O3、硝酸和NH4HCO3为原料,通过共沉淀法制备了Nd^3+:Y2O3透明激光陶瓷纳米粉体,并采用TG/DTA、XRD、FTIR、TEM以及EDS等测试方法对粉体性能进行了表征。结果表明,在先驱物中添加适量SO4^2-离子能减轻煅烧得到的Nd^3+:Y2O3粉体的团聚,使粉体粒度均匀并呈球形分布。在1100℃煅烧4h所得粉体粒度均匀,粒径在50~70nm之间,具有较好的分散性,适合作为制备透明激光陶瓷的粉体材料。  相似文献   

3.
等静压成型对氮氧化铝陶瓷透明性的影响   总被引:1,自引:0,他引:1  
本文采用高纯Al2O3、AlN和Al粉为原料,用Y2O3和MgO作为烧结助剂,在150 MPa下等静压成型,然后在氮气氛下,1850℃保温1 h制备出透明尖晶石型氮氧化铝(AlON)陶瓷.结果表明,透明AlON陶瓷晶粒尺寸细小,晶粒发育完善且分布均匀,晶界平直光滑且无第二相的存在.用等静压成型能明显能明显提高紫外区和可见光区的透明性能,但对红外区影响不明显,其在紫外光区(200~1100 nm)最大透光率为82;,在红外光区(1750~5000nm)最大透光率为98;,密度为3.70 g/cm3,约为其理论密度的99.7;.  相似文献   

4.
以Y2O3粗粉、Nd2O3、硝酸和NH4HCO3为原料,通过共沉淀法制备了Nd3+:Y2O3透明激光陶瓷纳米粉体,并采用TG/DTA、XRD、FTIR、TEM以及EDS等测试方法对粉体性能进行了表征.结果表明,在先驱物中添加适量SO42-离子能减轻煅烧得到的Nd3+:Y2O3粉体的团聚,使粉体粒度均匀并呈球形分布.在1100 ℃煅烧4 h所得粉体粒度均匀,粒径在50~70 nm之间,具有较好的分散性,适合作为制备透明激光陶瓷的粉体材料.  相似文献   

5.
采用改进的共沉淀法制备YAG透明陶瓷,研究了沉淀剂与金属盐溶液的摩尔比对粉体合成的影响以及成型压力对陶瓷烧结的影响.利用X射线衍射仪和场发射电子显微镜对实验样品进行表征.结果表明:当沉淀剂与金属盐溶液的摩尔比为NH4 HCO3/([Al3+]+[Y3+])=8,使用改进的共沉淀法在1000℃煅烧2h制备出平均粒径约为65 nm的YAG纳米粉体.以此YAG粉体为原料,TEOS为烧结助剂,经100 MPa成型后,在1750℃下真空烧结15 h获得透明陶瓷.  相似文献   

6.
采用化学沉淀法分步制备了分散性好、团聚少的纳米Y2O3、Nd2O3和Al2O3粉体,经球磨混合和喷雾干燥后,获得了颗粒形貌为球形、粒径在20 ~ 40 μm间的混合陶瓷粉体.粉体经成型后,采用真空烧结工艺制备出了直径为75 mm、厚度5 mm的高透明Nd∶ YAG陶瓷,其在1064 nm和400 nm处的透过率均高于80;,接近于Nd∶ YAG单晶的理论透过率.应力和干涉条纹测试结果表明,所制备的Nd∶ YAG透明陶瓷应力分布均匀,干涉条纹平直,具有良好的光学均匀性.FESEM和XRD测试结果表明,陶瓷的晶粒尺寸在10 ~ 20 μm之间,晶界干净,没有残留气孔和杂质相.对从Nd∶ YAG陶瓷圆片上选切出的3 mm×3mm×5 mm和3mm×3 mm×10mm的Nd∶ YAG激光陶瓷元件进行激光性能测试,实现了连续瓦级激光输出,在泵浦注入功率为18.6 W时,分别获得了7.78W和7.75 W激光输出,光光转换效率分别为41.8;和41.7;.  相似文献   

7.
溶胶-凝胶法制备Nd:GGG透明陶瓷纳米粉体   总被引:1,自引:0,他引:1  
溶胶-凝胶法制备出Nd3+∶Gd3Ga5O12(Nd:GGG)透明陶瓷纳米粉体.以TG-DTA、红外光谱、XRD、TEM、电子衍射和电子能谱等测试手段,对前驱体及烧成粉体的结构和形貌进行了研究.结果表明,Nd∶GGG超细粉体的最佳烧成温度为1000℃,粉体样品粒度小、粒径均匀,在70~100nm之间.  相似文献   

8.
本文采用化学沉淀法制备了羟基磷灰石(HAP)纳米粉体,利用铁粉和铝粉经过高能机械球磨和热处理工艺制备了金属间化合物Fe3Al粉体;将制备的HAP粉体为基体按质量百分含量加入4;的Fe3Al粉体,经过球磨分散得到复合粉体,然后经过冷压成型和160MPa冷等静压成型及1200℃真空无压烧结,得到羟基磷灰石与金属间化合物Fe3Al的生物复合材料.通过XRD、SEM等测试方法揭示了材料的相组成及微观结构,研究结果表明:采用化学沉淀法制备的羟基磷灰石粉体粒径在100纳米以内,结晶度高、粒度均匀,纯度高;Fe3Al质量含量为4;的Fe3Al/HAP生物复合材料HAP的基本晶体结构没有因为Fe3Al的加入而发生变化,其抗弯强度为89.6MPa,较纯羟基磷灰石陶瓷有了较大的提高,证明Fe3Al增强HAP是有效的.  相似文献   

9.
为制备分散均匀的纳米尺度的共晶陶瓷复合粉体,采用Al(NO3)3·9H2O和Gd2O3作为原材料,通过醇-水加热法制备了纳米尺度的Al2O3/GdAlO3共晶成分陶瓷粉体.研究了溶液初始浓度配比和pH值等对复合粉体粒径的影响.通过SEM、TEM、FT-IR和BET N2吸附法等手段表征了前驱体颗粒大小和分散性3确定最佳的前驱体制备工艺,对前驱体进行煅烧制得Al2O3/GdAlO3复合陶瓷粉体.结果表明,前驱体粒径和分散性受制备工艺影响较大;特别是,最佳工艺制备的前驱体平均粒径20 nm,分散性良好,形貌多呈球形;1250℃煅烧后得到的Al2O3/GdAlO3共晶陶瓷粉体的晶化良好、成分均匀,粉体粒径100~200 nm.  相似文献   

10.
利用热压烧结(HP)和放电等离子烧结(SPS)制备了ZrB2陶瓷,研究了粉体粒径和烧结工艺对ZrB2陶瓷致密化行为和晶粒长大的影响.结果表明,相同工艺下以平均粒径为200 nm的ZrB2粉体为原料替代平均粒径为2μm的ZrB2粉体可以明显促进粉体的致密化烧结,采用SPS替代HP工艺可以显著降低粉体的致密化温度,采用平均粒径为200 nm的ZrB2粉体在1900℃进行SPS工艺烧结即可实现ZrB2陶瓷的致密化烧结.  相似文献   

11.
采用高纯、超细的尖晶石粉体,用真空烧结法结合热压和热等静压制备技术制备光学透明多晶尖晶石,研究了制备工艺条件对透明尖晶石的密度和微观结构的影响等.研究表明:多晶尖晶石陶瓷在烧结过程中,其密度随着烧结温度和烧结时间增加而线性增长,高的烧结温度导致大幅度的晶粒长大.  相似文献   

12.
通过化学途径合成了Nd3+掺杂的氧化镥纳米晶粉体,研究了工艺条件对粉体性能及透明陶瓷光学性能的影响,通过优化工艺参数,获得了品粒均匀、尺寸在30 nm的高质量的Nd:Lu2O3纳米晶粉体.采用复合溶液法合成的粉体,经等静压成型、流动H2气氛及1880℃/ 8 h烧结后制备出光学透明性好的Nd:Lu2O3透明陶瓷,其在1080nm波长处的实测折射率为1.908,直线透过率超过75;,发射截面(σem)达到6.5×10-20cm2.  相似文献   

13.
以稀土硝酸盐和NH4HCO3作为原料,采用共沉淀法合成用于制备Eu掺杂Lu2O3-Gd2O3固溶体透明陶瓷的一系列(Gd0.95-xLuxEu0.05)2O3(x=0~0.95)纳米粉体,并利用XRD、SEM、TEM、BET和TMA手段对合成粉体的性能进行表征.结果表明,经800 ℃煅烧后的粉体均为立方相的(Gd0.95-xLuxEu0.05)2O3,粉体颗粒细小,呈近球形,且颗粒尺寸分布较均匀.将合成的一系列纳米粉体压制成型,于1700 ℃真空烧结24 h得到了透明性良好的(Gd0.45Lu0.5Eu0.05)2O3和(Lu0.95Eu0.05)2O3透明陶瓷,其在可见光区的最高直线透过率分别为53.5;和62.3;.在254 nm激发下,透明陶瓷在612 nm处均呈现出很强的Eu3+的红光发射.(Gd0.45Lu0.5Eu0.05)2O3透明陶瓷中由于存在Gd3+向Eu3+的有效地能量传递,其发光强度是(Lu0.95Eu0.05)2O3透明陶瓷的1.7倍.  相似文献   

14.
金属Fe纳米粒子,易氧化和团聚,将其嵌入陶瓷基体中,可解决这个问题.本文以Al和Fe3O4为反应物,采用机械力化学法合成了纳米铁/氧化铝复合粉体.利用X射线衍射(XRD),结合透射电镜(TEM)分析了复合粉体的物相组成及纳米Fe的粒径.运用示差扫描量热法(DSC)、热重(TG)研究了在氩气和空气不同气氛、室温和高温不同温度下复合粉体的热稳定性.结果表明:复合粉体具有蛋糕-果仁形态,纳米Fe的粒径在20~80nm之间;复合粉体具有良好的抗氧化性.  相似文献   

15.
采用溶胶-凝胶法确定镧改性锆钛酸铅(PLZT)凝胶粉体的制备工艺流程,采用TG-DTA热分析确定了凝胶粉体的热处理工艺,获得粉体颗粒尺寸分布均匀,最小颗粒尺度可达到纳米级的PLZT陶瓷粉体。研究了La掺杂浓度和预烧温度对粉体晶型转变和陶瓷性能的影响。确定较佳的掺杂浓度为2 wt%,较佳的预烧温度为700~870℃。在此基础上,采用溶液混合法制备了0-3型PLZT/互穿聚合物(IPN)压电复合材料,考察了复合材料的形貌以及频率对PLZT介电性能的影响。结果表明,粉体在复合体系中保持良好的分散状态,分布较为均匀,孔隙较少;La的掺杂浓度增加,陶瓷相的介电常数和介电损耗增加;而复合后体系的介电常数和介电损耗均有所降低。  相似文献   

16.
分别以TiH2,ZrH2为原料,结合原位反应与脉冲电流辅助烧结制备了TiB2-SiC及ZrB2-SiC复相陶瓷.研究发现,所制备的复相陶瓷表现出一定的织构化现象,TiB2及ZrB2晶粒在反应烧结过程中其(001)面沿垂直压力和电流方向生长.金属氢化物粉体的粒径大小对复相陶瓷的致密化及微结构有较大影响:粒径越小越有利于陶瓷的致密化和硼化物晶粒的定向生长.由于金属硼化物的定向,复相陶瓷的机械性能表现出各向异性.TiB2-SiC复相陶瓷具有较高的断裂韧性,最高可达7.3 MPa·m1/2,而ZrB2-SiC复相陶瓷具有更高的抗弯强度(937 MPa).  相似文献   

17.
采用化学共沉淀法制备陶瓷Zr2P2WO12 (ZWP)和金属Ni复合材料粉体,烧结过程中还原剂柠檬酸将金属Ni2+还原.粉体中ZWP粒径100~200 nm,金属Ni粒径50~100 nm,且混合均匀.复合材料块体的制备采用冷压和放电等离子体烧结(SPS)两种方法,结果表明SPS制备的样品具有更好的块体致密度,可达84;以上.研究表明,通过调节Ni离子的掺杂比例可制备出热膨胀系数从负值到正值的可控热膨胀系数复合材料.当Zr2P2WO12/Ni的摩尔比为5∶5时,制备出的材料为近零膨胀复合材料.  相似文献   

18.
YAG具有许多独特的性能,应用非常广泛.利用水热沉淀法制备超细YAG粉体,研究合成工艺对粉体形貌的影响,并采用合成的超细YAG粉体制备YAG多孔陶瓷,结果显示:盐碱摩尔比Y3+:OH-=1:8时,能够得到形貌比较均匀的颗粒,当继续增大盐碱摩尔比时,得到的粉体形貌没明显变化.反应时间越长,颗粒尺寸越粗大.Y3+的浓度越小,颗粒尺寸越细小.通过实验,在反应温度为200 ℃、反应时间为2 d和盐碱摩尔比为1:8的条件下,所得到棒状颗粒为多晶体结构,它的直径大约是150 nm,长度大约为4000 nm,通过XRD检测,粉体纯度较高.随着陶瓷坯体烧结温度的提升,YAG多孔陶瓷气孔率呈现下降趋势,而抗压强度随之升高.结合气孔率、抗压强度和显微孔结构综合考虑,利用水热沉淀法合成的棒状超细YAG粉体烧结制备YAG多孔陶瓷的烧结温度确定为1500 ℃较为适宜.  相似文献   

19.
陈杰 《人工晶体学报》2008,37(6):1555-1558
以BaCl2、TiCl4、SrCl2为原料,以NaOH为沉淀剂,利用微波加热技术在低温常压下快速制备出了Ba1-xSrxTiO3系列纳米粉体.应用XRD、TEM等对粉体的结构、形貌进行了表征.结果表明,在80 ℃左右,pH为14,5~10 min内即制备出颗粒大小分布均匀、粒径在50 nm的高纯Ba1-xSrxTiO3(0≤x≤1)纳米粉体,该方法合成粉体属于立方相钙钛矿晶体结构,粒子形状近似为球形.粉体经过干压成型后在1180 ℃烧结,所得钛酸钡陶瓷的相对密度达到96.3;.  相似文献   

20.
采用草酸盐共沉淀法成功合成了Ba(Fe0.5Nb0.5)O3 (BFN)纳米粉体,并采用sol-gel法获得Al2O3改性的BFN复合粉体,于1150℃两步烧结3h获得复合陶瓷,研究了Al2O3添加对BFN陶瓷微观形貌和介电性能的影响.结果表明:BFN · xAl2O3(x=4wt;,6wt;,8wt;)复合粉体颗粒分布均匀,粒径约为50 nm.Al2O3的加入可明显降低陶瓷的烧结温度.Al2 O3添加量为4wt;的复合陶瓷有高的介电常数,较小的介电损耗和良好的温度稳定性.BFN·xAl2O3复合陶瓷中存在的介电弛豫行为符合Arrhenius定律,是一个热激活过程,随着x的增加,复合陶瓷的激活能逐渐增大,这与无定形Al2O3增加了陶瓷的弛豫势垒,使界面极化减弱相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号