首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究复杂地况下含特征层理煤岩的动态力学行为,采用■50 mm分离式霍普金森压杆实验系统,对含层理(0°、30°、45°、60°、90°)煤岩进行动态三轴循环冲击实验研究,并结合3D轮廓扫描仪量化其断裂界面,分析层理效应和围压效应对煤岩动态力学特性及其损伤破坏规律的影响。研究表明:围压的施加使煤岩应力-应变曲线出现弹性后效现象;较无围压状态,抗压强度提高3.9~4.2倍,失效应变增大2.59~3.05倍。随着层理角度的增大,煤岩的动态抗压强度、弹性模量和能量透射率均呈现先降低后升高的U形分布,在层理角为45°时均达到最小值;能量吸收率和断面粗糙度呈现先增大后减小的∩形分布,损伤变量呈现N形分布,在层理角为45°时达到最大值。煤岩的损伤破坏特征随层理角度的变化可概括为张拉破坏(0°)-剪切破坏(30°、45°和60°)-劈裂破坏(90°)的演变过程,所得特征规律可为实际复杂环境下煤层气资源安全高效开采提供理论支持。  相似文献   

2.
为探究层状板岩动态破坏机理及能耗规律,通过分离式霍普金森压杆(Split Hopkinson Pressure Bar)系统和高速摄像仪开展了巴西劈裂试验。研究了不同层理角度和加载率下板岩动态拉伸能量耗散规律以及岩体破坏模式、破坏过程与能量耗散之间的关系。通过研究得到如下主要结论:(1)随着加载率的提高,板岩动态拉伸强度和耗散能密度均呈现指数增长的趋势;(2)当层理角度θ为0°时,岩体主要是沿层理面拉伸破坏,破裂面形成破裂带,耗散能低;当层理角度θ为15°时,破裂面为剪切破裂带,而θ为30°和45°是拉剪复合破坏,两者耗散能较高;当层理角度θ为60°、75°、90°时,岩样主要是沿非层理面拉伸破坏,破裂面形成环状和中心起裂两种,耗散能最大;(3)随着加载率的提高,岩体耗散能密度越大,岩体吸收的能量越多,分形维数D值越大,岩体越破碎。  相似文献   

3.
为研究岩石在压剪荷载作用下的断裂特性,在岩石试样侧边切斜裂缝,预制角度分别为30°、45°、60°的初始裂纹,利用TAW-2000微机控制电液伺服岩石三轴试验机进行单轴压缩断裂试验。试验结果表明:边切斜裂缝岩石单轴压缩试样表现为明显脆性,其峰值荷载随初始裂纹角度的增大而增大,大角度初始裂纹具有更高的安全性;试样从预制裂纹尖端开始起裂,并产生向荷载作用方向扩展的翼型裂纹或反翼裂纹,缝尖裂纹扩展初期先受到压剪应力作用,随着裂纹逐渐扩展过程转变为拉应力作用,试样的最终破坏由张拉裂纹主导破坏,初始裂纹角度为45°、60°时伴随部分剪切破坏;裂纹起裂角度随初始裂纹角度的增大而呈现增大趋势,且在初始裂纹角度为60°时,同时出现了反翼裂纹与翼裂纹,起裂模式及角度的控制因素为沿扩展路径方向上法向应力值的相对大小。  相似文献   

4.
为了研究不同微结构陶瓷材料的冲击破坏特征,以从微结构角度出发、描述陶瓷材料非弹性变形和断裂行为的Deshpande-Evan模型为基础构建本构模型,计算了无约束条件下材料的应力状态。为了验证改进模型的有效性,将VUMAT子程序编程方法将与ABAQUS有限元软件相结合,并将其应用于典型陶瓷材料(YAG透明陶瓷)冲击破坏过程的分析模拟。采用改进模型分析应变率、应力三轴度、晶粒尺寸及初始缺陷分布密度对YAG透明陶瓷动态力学行为和损伤演化机制的影响规律。结果表明:随着晶粒尺寸和裂纹分布密度的增加,YAG透明陶瓷破坏程度随之加剧,完全损伤区域面积也随之增加,晶粒尺寸对YAG透明陶瓷宏观破坏特征的影响程度要大于裂纹分布密度;YAG透明陶瓷失效强度以及断裂应变随着晶粒尺寸以及初始缺陷分布密度的增大而减小;随着应变率不断增加,YAG透明陶瓷在不同晶粒尺寸以及初始缺陷分布密度下的峰值应力和断裂应变均随之增加;裂纹扩展速度会随着晶粒尺寸的增加呈现出先增加而后平缓的趋势,裂纹扩展速度与初始缺陷分布密度系数成线性关系。改进模型可以描述YAG透明陶瓷微结构对其宏观破坏特征的影响,为进一步分析微结构对陶瓷材料宏观...  相似文献   

5.
应用界面力学镜像点法及断裂力学理论分析了风沙冲击作用下钢结构表面涂层与基体的界面问题。分析结果表明:冲击角度一定时,界面应力随着冲击速度的增大而增大;冲击速度一定时,界面正应力在冲击点附近较大,在冲击角度为45°时最大;界面切应力在冲击角度为30°时达到最大;冲击角度一定时界面位移随着冲击速度的增大而增大,界面水平位移在冲击角度为30°时最大,冲击速度一定时界面垂直位移随着冲击角度的增大而增大。界面破坏机理是因为界面存在应力集中现象,易发生破坏,切向破坏较为严重。  相似文献   

6.
为研究实时高温作用对花岗岩冲击力学特性的影响,以川藏铁路色季拉山施工区域加里东期花岗岩为研究对象,利用分离式霍普金森杆(SHPB)及同步箱式电阻炉,对20~800 ℃实时高温下的花岗岩试件进行冲击压缩试验,分析高温作用及加载应变率对试件破碎特征、动态抗压强度及能量吸收情况的影响,基于粉晶X射线衍射分析矿物成分变化与花岗岩动力学强度的内在关联。研究表明:20~400 ℃高温试件以脆性劈裂破坏为主,碎片形态呈纺锤形,两端尖锐,而600 ℃高温试件以塑性破坏为主,形状趋于圆钝;试件峰值应力随温度升高具有先增大后减小的变化趋势,200 ℃时达到强度阈值,随后持续降低;单位体积岩石耗散能与加载应变率呈线性正相关关系,与温度呈二次函数关系,与峰值应力呈指数关系,拟合效果良好;石英、云母和长石三种主要矿物成分的含量波动、相态变化等因素共同导致花岗岩动力学强度在200 ℃后逐步劣化。  相似文献   

7.
典型的岩石动态压缩应力-应变曲线有不同的阶段,岩石变形、破坏形态也有不同的图像表征,力学响应和图像表征具有一一对应关系。针对上述特性,组合分离式霍普金森压杆(SHPB)与高速摄像机,建立物像同步分析装置,系统研究了岩石在冲击荷载下完整的应力和应变动态响应,并实时采集图像信号。最终,根据应力波传播理论,编制了物象同步分析程序,通过界面显示可实现力学响应与图像表征同步分析。该程序直观地反映了岩石在冲击荷载作用下,应力-应变曲线中不同阶段的力学特性及与其对应的试样开裂情况、破坏趋势、损伤程度等图像表征,清晰地揭示了岩石变形破坏过程的力学机理。  相似文献   

8.
针对混凝土材料在冲击荷载作用下能量耗散和破碎程度关联性难确定的问题,采用分离式霍普金森压杆(SHPB)完成了混凝土试块冲击试验,通过对冲击后碎块的筛分试验和应力波传播过程中应变的测试,得到了试块的能量耗散规律和破碎特征。结果表明,(1) 入射应力波的加载时间约为380 μs,入射能、反射能和吸收能随冲击气压的增大而增大;同一气压下,反射能最早达到平衡; (2) 平均应变率越大,入射能和吸收能也越大;当平均应变率为300/s左右时,能量利用率为最低值; (3) 随着入射能的增加,吸收能的增长率越来越大,当入射能达到2100 J时,吸收能近乎线性增长; (4) 随冲击气压增大,试样由拉裂破坏逐渐转移为压碎破坏,且随着材料吸收能的增大,平均破碎尺寸越来越小。当吸收能大于700 J时,吸收能对试样的平均破碎尺寸减小的影响较小。  相似文献   

9.
为研究层状复合岩石高温作用下的力学特性,对相似材料制备的层状复合岩石进行20℃(室温),100℃,200℃和300℃热处理,并开展单轴压缩试验获取其物理力学参数。结果表明,随着温度升高,层状复合岩石质量变化率与体积膨胀率呈上升趋势,且在100℃时增幅明显。拟合各力学参数的经验公式发现,峰值强度及弹性模量趋于劣化并呈线性降低,峰值应变与温度成正相关。随着温度升高,层状复合岩石呈剪切–滑移型破坏,单一类岩石由剪切破坏向张拉–剪切破坏转化,破坏时微裂纹数量增多,在300℃时延性特征显著。引入考虑温度效应的岩石本构模型并拟合了不同温度下的应力应变曲线,该模型较好地表征了热处理后层状复合岩石的损伤演化规律及破坏特征,合理地揭示了层状复合岩石高温作用后的损伤机理。  相似文献   

10.
地下岩体工程爆破开挖中,距爆源不同距离处岩体承受的地应力和动载荷大小不同,从动载荷的角度表征岩石动态破坏结果与工程实际更吻合。为研究动载荷和地应力大小对岩体破碎和能量耗散特性的影响,利用动静组合加载试验装置,分别设置7个冲击速度和轴向静应力等级,对红砂岩试件进行冲击试验。根据试件的破碎状况,分析不同静应力工况下冲击速度对岩石破坏模式和机理的影响。计算不同工况下的应力波能量值,研究冲击速度和轴向静应力对岩石能耗特性的影响。对破坏试件进行筛分试验,研究岩石破碎分形维数随冲击速度和轴向静应力的变化关系。结果表明,随着冲击速度的增大,试件的破坏程度逐渐加大。无轴压时岩石试件破坏后整体仍是一个圆柱体,属于张拉破坏;有轴压时岩石试件宏观破坏后呈沙漏状,属于拉剪破坏。岩石耗散能随冲击速度的升高呈二次函数关系递增;轴向静应力越高,递增幅度越小。随着冲击速度的升高,岩石分形维数由零逐渐增加;随着轴向静应力的升高,分形维数由零转为大于零的临界冲击速度先升高后降低。  相似文献   

11.
高速列车运行过程中车轴可能遭受不同程度的冲击载荷作用,导致车轴的结构损伤与破坏,从而影响列车运营安全和服役寿命.因此,明晰冲击载荷下车轴材料的力学响应和变形损伤行为,对高速动车组车轴的运维与设计具有重要意义.论文研究了DZ2车轴钢在中应变率(0.1~100 s-1)拉伸条件下的力学性能和微观结构演变,揭示了DZ2车轴钢的变形与失效机理,构建了可准确描述DZ2车轴钢力学响应行为的Zerilli-Armstrong模型.结果表明,位错滑移和韧性断裂是DZ2车轴钢塑性变形和失效的主要机制,但由于位错运动状态的改变,其强度的应变率依赖性在不同应变率范围内存在较大差异.当应变率低于10 s-1时,DZ2车轴钢内的位错密度低,位错运动阻碍作用小,其强度不会随应变率增加而显著变化,具有低的应变率敏感性;而在应变率超过10 s-1后,DZ2车轴钢内的位错密度大幅度增加,位错运动速率加快,位错短程作用增强,从而增大了材料的变形抗力,材料的强度随应变率增加而增大,表现出显著的应变率强化效应,应变率敏感性也明显提高.与实验数据相一致,Zeri...  相似文献   

12.
有限质点法是以向量式力学为基础的新兴结构分析方法,本文将其应用于冲击荷载作用下的网壳结构的倒塌破坏模拟中。以空间杆单元为例建立了有限质点法的基本方程,推导了求解几何和材料非线性问题的基本公式。为计算断裂问题,建立了空间杆单元的断裂准则和断裂模型,发展了有限质点法进行断裂分析的基本算法。通过对某双层网壳冲击荷载下破坏过程的模拟和分析,验证了该方法在结构倒塌破坏过程模拟中的有效性和适用性。  相似文献   

13.
动态压缩荷载作用下,脆性岩石内部动态细观裂纹扩展特性,对岩石宏观动态力学特性有着重要的影响。然而,对岩石内部动态细观裂纹扩展与宏观动态力学特性的关系研究较少。基于准静态裂纹扩展作用下的应力-应变本构模型、准静态与动态裂纹扩展断裂韧度关系、裂纹速率与应变率关系模型及应变率与动态断裂韧度关系,提出了一种基于细观力学的动态应力-应变本构模型。其中裂纹速率与应变率关系,是根据裂纹长度与应变关系的时间导数推出;应变率与动态断裂韧度关系,是根据推出的裂纹速率及应变率关系,与裂纹速率及断裂韧度关系相结合而得到。研究了应变率对应力-应变本构关系及动态压缩强度影响。并通过试验结果验证了模型的合理性。讨论了岩石初始损伤、围压、模型中参数m、ε0和R对应力-应变关系、动态压缩强度和动态弹性模量的影响。研究结果可为动态压缩荷载作用下深部地下工程脆性围岩稳定性分析提供了一定的理论支持。  相似文献   

14.
准脆性工程材料及结构在外力作用下,不仅引起内部缺陷变化和微裂纹的出现及发展,且使得其结构承载能力降低或性能劣化.在其材料失效过程中常存在裂缝与断裂损伤过程区.为研究材料细观缺陷或微裂纹与宏观破坏的规律,通过细观力学方法,对于代表性体积单元RVE中的圆饼型微裂纹的尺寸与密度变化,探讨其宏观断裂过程区力学参量与损伤之间的量化关系.借助宏观断裂过程区的黏聚裂纹模型,将损伤单元RVE嵌入到宏观裂缝端部的断裂过程区中,对其进行联接细观损伤到宏观破坏的力学多尺度研究.文中也通过实验数据,对其理论计算结果进行了算例的讨论与分析.  相似文献   

15.
为改善钢管混凝土加劲混合构件因钢管内外混凝土存在力学差异,组合效应较低的不足,采用玻璃纤维增强复合材料(GFRP)管对其进行约束,研究了GFRP管约束钢管混凝土加劲混合柱(FCECFST)的偏压力学性能,将FCECFST与普通钢管混凝土加劲混合柱、GFRP管约束钢筋混凝土柱和钢管混凝土柱进行偏压试验对比,通过荷载-变形曲线、侧向挠度分布曲线和荷载-应变曲线剖析了试件破坏机理。研究结果表明:FCECFST偏压破坏以环向纤维断裂为标志;相比其他3种组合构件,FCECFST荷载-变形曲线峰值更高且下降段更平缓,表现出良好的极限承载力、抗弯刚度、延性性能和耗能能力;GFRP管对外围混凝土约束作用明显,对试件偏压力学性能影响显著。  相似文献   

16.
李念  陈普会 《力学学报》2015,47(3):458-470
针对复合材料层合板低速冲击损伤问题,提出了一种各向异性材料连续介质损伤力学模型,模型涵盖损伤表征、损伤起始判定和损伤演化法则3 个方面. 通过材料断裂面坐标下的损伤状态变量矩阵完成损伤表征,并考虑断裂面角度的影响,建立了主轴坐标系下的材料损伤本构关系. 损伤起始由卜克(Puck) 失效准则预测,损伤演化由断裂面上的等效应变控制,服从基于材料应变能释放的线性软化行为. 模型区分了纤维损伤和基体损伤,并根据冲击载荷下层内产生多条基体裂纹继而扩展至界面形成层间裂纹(分层) 的试验观察,引入基体裂纹饱和密度参数表征层间分层. 以[03/45/-45]S 和[45/0/-45/90]4S 两种铺层的复合材料层合板为例,预测了不同冲击能量下复合材料层合板的低速冲击损伤响应参数,试验结果证明了连续介质损伤力学模型的有效性.模型在不同网格密度下的计算结果表明单元特征长度的引入可以在一定程度上降低损伤演化阶段对网格密度的依赖性.   相似文献   

17.
运用RX3 -20 -12型箱式电阻炉将砂岩试样分别加热至100、200、400、600、800和1 000℃,然后自然冷却至常温,制成经历不同温度的砂岩试件。运用直径为100mm的分离式Hopkinson压杆装置,用薄圆形紫铜片作为波形整形器,以不同弹速轴向冲击砂岩试样,测试经历不同温度后砂岩试样在不同冲击荷载下的动态力学性能,得出了砂岩的应力-应变曲线及各自的破坏形态。结果表明:常温下砂岩的动态压缩破坏的应力-应变曲线具有明显的4阶段特征,但经历100~400℃作用的砂岩应力-应变曲线的平台段消失,温度继续升高时平台段又重新出现;砂岩的峰值应变随温度升高而升高,动态压缩强度也随温度升高而升高,但在800℃以后陡然下降;砂岩的动态压缩破坏形态受温度和冲击荷载的共同影响,冲击荷载越大破碎程度越大,而且破坏过程总是由外层向内芯发展。  相似文献   

18.
地下硐室作为爆炸危险物的隐蔽贮藏空间,有潜在的内爆炸风险。为研究内爆炸作用下硐室围岩的动态响应机制,提出了一种基于岩石HJC (Holmquist-Johnson-Cook)模型和节理内聚力单元的损伤-虚拟裂纹模型。分析了模拟方法的可靠性,并在此基础上,通过多物质ALE算法对球形硐室内爆炸过程进行数值模拟,分析了围岩损伤范围和分区破坏规律。研究表明:插入内聚力单元弥补了HJC模型无法模拟低静水压力下张拉破坏的不足,且尺寸效应易于处理。模拟方法同时考虑了岩体内张拉裂纹的扩展和岩石材料的塑性损伤,能够真实地反映岩石破坏的全过程。以红砂岩为例,根据数值模拟结果,填实(耦合装药)爆炸时围岩分区破坏规律明显,破碎区比例半径为0.26 m/kg1/3、裂隙区比例半径为0.47 m/kg1/3。随着硐室尺寸的增大,空气的间隔作用可以减小爆炸荷载对围岩的损伤作用,比例半径达到0.52 m/kg1/3时,可以实现爆炸荷载的完全解耦。  相似文献   

19.
为考察脆性空心颗粒在冲击载荷作用下的应变率效应和破碎行为的细观机理,以粉煤灰漂珠为研究对象,基于低速冲击实验和有限元数值模拟,对比了典型空心颗粒材料在不同加载速率下的力学响应特性和细观压溃行为,阐释了材料宏观应变率效应产生的细观机理,获得以下结果。(1)在0.001~300 s?1应变率范围,漂珠颗粒的破碎率和Hardin破碎势平均提升了约21%和10%~30%,材料比吸能提升了50%~125%,比吸能的额外增加主要与动态颗粒滑移产生的摩擦耗能相关。颗粒平均尺寸较大的试样体现出更强的应变率效应。(2)初始压溃阶段的应力应变响应特征的数值模拟结果与实验结果较吻合,低速冲击下动态二次压溃现象产生的细观机理为动态颗粒滑移和压紧行为对加载速率的依赖性。(3) 数值模拟表明,冲击加载下产生相同应变时颗粒的损伤程度和范围大于准静态加载,这与实验所得破碎势随应变率增加的结果一致。对比低速冲击实验的相对破碎势分析和细观数值模拟结果可知,脆性颗粒堆积材料在动态冲击下表现出的宏观应变率效应主要归因于颗粒压溃行为的率敏感性和动态加载下颗粒破碎能量利用率的降低。  相似文献   

20.
大型浮顶式储油罐的爆炸破坏机理实验   总被引:2,自引:0,他引:2  
利用可燃气体爆轰实验装置,通过乙炔/空气混合气体沿管道稳定爆轰后形成的冲击波对浮顶式储油罐模型的冲击实验,分别测得模型壁面上的超压荷载、动态应变及振动加速度时程曲线.通过对比分析,研究了大型浮顶式储油罐在爆炸冲击荷载作用下的动态响应特性及其破坏机理.在可燃气体爆炸荷载作用下,储罐结构在变形过程中诱发罐内液体产生压缩波并...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号