首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present article, the new exact solutions of fractional coupled Schr\"{o}dinger type equations have been studied by using a new reliable analytical method. We applied a relatively new method for finding some new exact solutions of time fractional coupled equations viz. time fractional coupled Schr\"{o}dinger--KdV and coupled Schr\"{o}dinger--Boussinesq equations. The fractional complex transform have been used here along with the property of local fractional calculus for reduction of fractional partial differential equations (FPDE) to ordinary differential equations (ODE). The obtained results have been plotted here for demonstrating the nature of the solutions.  相似文献   

2.
In this article, the sub‐equation method is presented for finding the exact solutions of a nonlinear fractional partial differential equations. For this, the fractional complex transformation method has been used to convert fractional‐order partial differential equation to ordinary differential equation. The fractional derivatives are described in Jumarie's the modified Riemann–Liouville sense. We apply to this method for the nonlinear time fractional differential equations. With the aid of symbolic computation, a variety of exact solutions for them are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Dynamical behavior of many nonlinear systems can be described by fractional‐order equations. This study is devoted to fractional differential–difference equations of rational type. Our focus is on the construction of exact solutions by means of the (G'/G)‐expansion method coupled with the so‐called fractional complex transform. The solution procedure is elucidated through two generalized time‐fractional differential–difference equations of rational type. As a result, three types of discrete solutions emerged: hyperbolic, trigonometric, and rational. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

5.
In this paper, we study a class of integral boundary value problem for fractional order impulsive differential equations, where both the nonlinearity and the impulsive terms contain the fractional order derivatives. By using fixed‐point theorems, the existence results of solution for the boundary value problem are established. Finally, some examples are presented to illustrate the existence results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We point out some mistakes in a known paper. Some existence results for solutions of two classes of boundary value problems for nonlinear impulsive fractional differential equations are established. Our analysis relies on the well‐known Schauder fixed point theorem. Examples are given to illustrate the main results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider the analytical solutions of fractional partial differential equations (PDEs) with Riesz space fractional derivatives on a finite domain. Here we considered two types of fractional PDEs with Riesz space fractional derivatives such as Riesz fractional diffusion equation (RFDE) and Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second‐order space derivative with the Riesz fractional derivative of order α∈(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first‐order and second‐order space derivatives with the Riesz fractional derivatives of order β∈(0,1] and of order α∈(1,2] respectively. Here the analytic solutions of both the RFDE and RFADE are derived by using modified homotopy analysis method with Fourier transform. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method. Here the space fractional derivatives are defined as Riesz fractional derivatives. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This article discusses the analyticity and the long‐time asymptotic behavior of solutions to space‐time fractional diffusion‐reaction equations in . By a Laplace transform argument, we prove that the decay rate of the solution as t is dominated by the order of the time‐fractional derivative. We consider the decay rate also in a bounded domain. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The finite‐difference method applied to the time‐fractional subdiffusion equation usually leads to a large‐scale linear system with a block lower triangular Toeplitz coefficient matrix. The approximate inversion method is employed to solve this system. A sufficient condition is proved to guarantee the high accuracy of the approximate inversion method for solving the block lower triangular Toeplitz systems, which are easy to verify in practice and have a wide range of applications. The applications of this sufficient condition to several existing finite‐difference schemes are investigated. Numerical experiments are presented to verify the validity of theoretical results.  相似文献   

11.
We study the well‐posedness of the fractional differential equations with infinite delay on Lebesgue–Bochner spaces and Besov spaces , where A and B are closed linear operators on a Banach space X satisfying ,  and . Under suitable assumptions on the kernels a and b, we completely characterize the well‐posedness of in the above vector‐valued function spaces on by using known operator‐valued Fourier multiplier theorems. We also give concrete examples where our abstract results may be applied.  相似文献   

12.
In this paper, a new numerical method for solving the fractional Bagley‐Torvik equation is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block‐pulse functions and Bernoulli polynomials are presented. The Riemann‐Liouville fractional integral operator for hybrid functions is introduced. This operator is then utilized to reduce the solution of the initial and boundary value problems for the fractional Bagley‐Torvik differential equation to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
We investigate the existence of positive solutions to the singular fractional boundary value problem: $^c\hspace{-1.0pt}D^{\alpha }u +f(t,u,u^{\prime },^c\hspace{-2.0pt}D^{\mu }u)=0$, u′(0) = 0, u(1) = 0, where 1 < α < 2, 0 < μ < 1, f is a Lq‐Carathéodory function, $q > \frac{1}{\alpha -1}$, and f(t, x, y, z) may be singular at the value 0 of its space variables x, y, z. Here $^c \hspace{-1.0pt}D$ stands for the Caputo fractional derivative. The results are based on combining regularization and sequential techniques with a fixed point theorem on cones.  相似文献   

14.
In this article, we applied homotopy perturbation method to obtain the solution of the Korteweg‐de Vries Burgers (for short, KdVB) and Lax's seventh‐order KdV (for short, LsKdV) equations. The numerical results show that homotopy perturbation method can be readily implemented to this type of nonlinear equations and excellent accuracy. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
The aim of this paper is to develop fractional calculus for vector‐valued functions using the weak Riemann integral. Also, we establish the existence of weak solutions for a class of fractional differential equations with fractional weak derivatives.  相似文献   

16.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we propose a space‐time spectral method for solving a class of time fractional convection diffusion equations. Because both fractional derivative and spectral method have global characteristics in bounded domains, we propose a space‐time spectral‐Galerkin method. The convergence result of the method is proved by providing a priori error estimate. Numerical results further confirm the expected convergence rate and illustrate the versatility of our method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Objectives: In the paper, two new reliable analytical methods have been devised for getting new exact analytical solutions of wick-type stochastic time-fractional Benjamin-Bona-Mahony (BBM) equation. Moreover, the Hermite transform and inverse Hermite transform have been utilized for converting fractional stochastic differential equation to deterministic fractional partial differential equation and vice versa respectively. Here for reducing fractional partial differential equations (FPDE) to the ordinary differential equation (ODE), fractional complex transform has been utilized.

Methods: The authors have used a newly proposed method and Kudryshov method for getting the solutions for wick-type stochastic time-fractional Benjamin-Bona-Mahony (BBM) equation.

Results: By using two reliable methods, here, the authors find the new exact solutions for the governing equations.

Conclusion: Two new approaches to find solutions of the aforementioned equation have been established. Also, the new exact solutions have been obtained for stochastic differential equation by using two methods.  相似文献   


19.
We study the fractional differential equation (*) Dαu(t) + BDβu(t) + Au(t) = f(t), 0 ? t ? 2π (0 ? β < α ? 2) in periodic Lebesgue spaces Lp(0, 2π; X) where X is a Banach space. Using functional calculus and operator valued Fourier multiplier theorems, we characterize, in UMD spaces, the well posedness of (*) in terms of R‐boundedness of the sets {(ik)α((ik)α + (ik)βB + A)?1}k∈ Z and {(ik)βB((ik)α + (ik)βB + A)?1}k∈ Z . Applications to the fractional problems with periodic boundary condition, which includes the time diffusion and fractional wave equations, as well as an abstract version of the Basset‐Boussinesq‐Oseen equation are treated. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

20.
In this paper, a novel approach, namely, the linearization‐based approach of homotopy analysis method, to analytically treat non‐linear time‐fractional PDEs is proposed. The presented approach suggests a new optimized structure of the homotopy series solution based on a linear approximation of the non‐linear problem. A comparative study between the proposed approach and standard homotopy analysis approach is illustrated by solving two examples involving non‐linear time‐fractional parabolic PDEs. The performed numerical simulations demonstrate that the linearization‐based approach reduces the computational complexity and improves the performance of the homotopy analysis method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号