首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we study the stability and convergence of the Crank‐Nicolson/Adams‐Bashforth scheme for the two‐dimensional nonstationary Navier‐Stokes equations with a nonsmooth initial data. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the implicit Crank‐Nicolson scheme for the linear terms and the explicit Adams‐Bashforth scheme for the nonlinear term. Moreover, we prove that the scheme is almost unconditionally stable for a nonsmooth initial data u0 with div u0 = 0, i.e., the time step τ satisfies: τ ≤ C0 if u0H1L; τ |log h| ≤ C0 if u0H1 for the mesh size h and some positive constant C0. Finally, we obtain some error estimates for the discrete velocity and pressure under the above stability condition. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 155‐187, 2012  相似文献   

2.
We consider a class of elliptic inclusions under Dirichlet boundary conditions involving multifunctions of Clarke's generalized gradient. Under conditions given in terms of the first eigenvalue as well as the Fu?ik spectrum of the p ‐Laplacian we prove the existence of a positive, a negative and a sign‐changing solution. Our approach is based on variational methods for nonsmooth functionals (nonsmooth critical point theory, second deformation lemma), and comparison principles for multivalued elliptic problems. In particular, the existence of extremal constant‐sign solutions plays a key role in the proof of sign‐changing solutions (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this paper, we couple regularization techniques of nondifferentiable optimization with the h‐version of the boundary element method (h‐BEM) to solve nonsmooth variational problems arising in contact mechanics. As a model example, we consider the delamination problem. The variational formulation of this problem leads to a hemivariational inequality with a nonsmooth functional defined on the contact boundary. This problem is first regularized and then discretized by an h‐BEM. We prove convergence of the h‐BEM Galerkin solution of the regularized problem in the energy norm, provide an a priori error estimate and give a numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Given a k‐arc‐strong tournament T, we estimate the minimum number of arcs possible in a k‐arc‐strong spanning subdigraph of T. We give a construction which shows that for each k ≥ 2, there are tournaments T on n vertices such that every k‐arc‐strong spanning subdigraph of T contains at least arcs. In fact, the tournaments in our construction have the property that every spanning subdigraph with minimum in‐ and out‐degree at least k has arcs. This is best possible since it can be shown that every k‐arc‐strong tournament contains a spanning subdigraph with minimum in‐ and out‐degree at least k and no more than arcs. As our main result we prove that every k‐arc‐strong tournament contains a spanning k‐arc‐strong subdigraph with no more than arcs. We conjecture that for every k‐arc‐strong tournament T, the minimum number of arcs in a k‐arc‐strong spanning subdigraph of T is equal to the minimum number of arcs in a spanning subdigraph of T with the property that every vertex has in‐ and out‐degree at least k. We also discuss the implications of our results on related problems and conjectures. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 265–284, 2004  相似文献   

6.
In this paper we provide an existence result for a nonlocal problem of Kirchhoff‐type which involves both the p‐ and the q‐Laplacian and contains a critical term. Our approach is variational: we derive the existence of one non‐trivial solution via the multidimensional mountain pass theorem.  相似文献   

7.
In this article, we obtain the existence of at least two nontrivial solutions for a nonlinear elliptic problem involving p(x)-Laplacian type operator and nonsmooth potentials. Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions.  相似文献   

8.
We consider a combination of the standard Galerkin method and the subspace decomposition methods for the numerical solution of the two‐dimensional time‐dependent incompressible Navier‐Stokes equations with nonsmooth initial data. Because of the poor smoothness of the solution near t = 0, we use the standard Galerkin method for time interval [0, 1] and the subspace decomposition method time interval [1, ∞). The subspace decomposition method is based on the solution into the sum of a low frequency component integrated using a small time step Δt and a high frequency integrated using a larger time step pΔt with p > 1. From the H1‐stability and L2‐error analysis, we show that the subspace decomposition method can yield a significant gain in computing time. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

9.
The boundary value problem Δu + λeu = 0 where u = 0 on the boundary is often referred to as “the Bratu problem.” The Bratu problem with cylindrical radial operators, also known as the cylindrical Bratu‐Gelfand problem, is considered here. It is a nonlinear eigenvalue problem with two known bifurcated solutions for λ < λc, no solutions for λ > λc and a unique solution when λ = λc. Numerical solutions to the Bratu‐Gelfand problem at the critical value of λc = 2 are computed using nonstandard finite‐difference schemes known as Mickens finite differences. Comparison of numerical results obtained by solving the Bratu‐Gelfand problem using a Mickens discretization with results obtained using standard finite differences for λ < 2 are given, which illustrate the superiority of the nonstandard scheme. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 327–337, 2004  相似文献   

10.
We provide new insights into the a priori theory for a time‐stepping scheme based on least‐squares finite element methods for parabolic first‐order systems. The elliptic part of the problem is of general reaction‐convection‐diffusion type. The new ingredient in the analysis is an elliptic projection operator defined via a nonsymmetric bilinear form, although the main bilinear form corresponding to the least‐squares functional is symmetric. This new operator allows to prove optimal error estimates in the natural norm associated to the problem and, under additional regularity assumptions, in the L2 norm. Numerical experiments are presented which confirm our theoretical findings.  相似文献   

11.
In this paper we study a nonlinear second order periodic problem driven by a scalar p ‐Laplacian and with a nonsmooth, locally Lipschitz potential function. Using a variational approach based on the nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of nontrivial positive solutions and then establish the existence of a second distinct solution (multiplicity theorem) by strengthening further the hypotheses. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We consider a posteriori error estimation for a multipoint flux mixed finite element method for two‐dimensional elliptic interface problems. Within the class of modified quasi‐monotonically distributed coefficients, we derive a residual‐type a posteriori error estimator of the weighted sum of the scalar and flux errors which is robust with respect to the jumps of the coefficients. Moreover, we develop robust implicit and explicit recovery‐type estimators through gradient recovery in an H(curl)‐conforming finite element space. In particular, we apply a modified L2 projection in the implicit recovery procedure so as to reduce the computational cost of the recovered gradient. Numerical experiments confirm the theoretical results.  相似文献   

13.
In this paper, a spectral collocation approximation is proposed for neutral and nonlinear weakly singular Volterra integro‐differential equations (VIDEs) with non‐smooth solutions. We use some suitable variable transformations to change the original equation into a new equation, so that the solution of the resulting equation possesses better regularity, and the the Jacobi orthogonal polynomial theory can be applied conveniently. Under reasonable assumptions on the nonlinearity, we carry out a rigorous error analysis in L norm and weighted L2 norm. To perform the numerical simulations, some test examples (linear and nonlinear) are considered with nonsmooth solutions, and numerical results are presented. Further more, the comparative study of the proposed methods with some existing numerical methods is provided.  相似文献   

14.
In this paper, two new matrix‐form iterative methods are presented to solve the least‐squares problem: and matrix nearness problem: where matrices and are given; ??1 and ??2 are the set of constraint matrices, such as symmetric, skew symmetric, bisymmetric and centrosymmetric matrices sets and SXY is the solution pair set of the minimum residual problem. These new matrix‐form iterative methods have also faster convergence rate and higher accuracy than the matrix‐form iterative methods proposed by Peng and Peng (Numer. Linear Algebra Appl. 2006; 13 : 473–485) for solving the linear matrix equation AXB+CYD=E. Paige's algorithms, which are based on the bidiagonalization procedure of Golub and Kahan, are used as the framework for deriving these new matrix‐form iterative methods. Some numerical examples illustrate the efficiency of the new matrix‐form iterative methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In the present paper, we prove quantitative q‐Voronovskaya type theorems for q‐Baskakov operators in terms of weighted modulus of continuity. We also present a new form of Voronovskaya theorem, that is, q‐Grüss‐Voronovskaya type theorem for q‐Baskakov operators in quantitative mean. Hence, we describe the rate of convergence and upper bound for the error of approximation, simultaneously. Our results are valid for the subspace of continuous functions although classical ones is valid for differentiable functions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Given two 2‐regular graphs F1 and F2, both of order n, the Hamilton‐Waterloo Problem for F1 and F2 asks for a factorization of the complete graph into α1 copies of F1, α2 copies of F2, and a 1‐factor if n is even, for all nonnegative integers α1 and α2 satisfying . We settle the Hamilton‐Waterloo Problem for all bipartite 2‐regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2‐regular graph of the same order.  相似文献   

17.
We define Atkinson's semi‐definite p‐Laplacian eigenvalue problems, which include the regular p‐Laplacian eigenvalue problems with L 1 coefficient functions. Then we show that the Sturm oscillation theorem also holds for this eigenvalue problem.  相似文献   

18.
In 2003, O. V. Borodin and A. Raspaud conjectured that every planar graph with the minimum distance between triangles, dΔ, at least 1 and without 5‐cycles is 3‐colorable. This Bordeaux conjecture (Brdx3CC) has common features with Havel's (1970) and Steinberg's (1976) 3‐color problems. A relaxation of Brdx3CC with dΔ?4 was confirmed in 2003 by Borodin and Raspaud, whose result was improved to dΔ?3 by Borodin and A. N. Glebov (2004) and, independently, by B. Xu (2007). The purpose of this article is to make the penultimate step (dΔ?2) towards Brdx3CC. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 1–31, 2010  相似文献   

19.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

20.
The purpose of this paper is to study the mixed Dirichlet‐Neumann boundary value problem for the semilinear Darcy‐Forchheimer‐Brinkman system in L p ‐based Besov spaces on a bounded Lipschitz domain in R 3 , with p in a neighborhood of 2. This system is obtained by adding the semilinear term | u | u to the linear Brinkman equation. First, we provide some results about equivalence between the Gagliardo and nontangential traces, as well as between the weak canonical conormal derivatives and the nontangential conormal derivatives. Various mapping and invertibility properties of some integral operators of potential theory for the linear Brinkman system, and well‐posedness results for the Dirichlet and Neumann problems in L p ‐based Besov spaces on bounded Lipschitz domains in R n (n ≥3) are also presented. Then, using integral potential operators, we show the well‐posedness in L 2‐based Sobolev spaces for the mixed problem of Dirichlet‐Neumann type for the linear Brinkman system on a bounded Lipschitz domain in R n (n ≥3). Further, by using some stability results of Fredholm and invertibility properties and exploring invertibility of the associated Neumann‐to‐Dirichlet operator, we extend the well‐posedness property to some L p ‐based Sobolev spaces. Next, we use the well‐posedness result in the linear case combined with a fixed point theorem to show the existence and uniqueness for a mixed boundary value problem of Dirichlet and Neumann type for the semilinear Darcy‐Forchheimer‐Brinkman system in L p ‐based Besov spaces, with p ∈(2?ε ,2+ε ) and some parameter ε >0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号