首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, new Lyapunov‐type inequalities are obtained for the case when one is dealing with a class of fractional two‐point boundary value problems. As an application of this result, we obtain a lower bound for the eigenvalues of corresponding equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In the present paper the unique solvability of two non‐local problems for the mixed parabolic‐hyperbolic type equation with complex spectral parameter is proved. Sectors for values of the spectral parameter where these problems have unique solutions are shown. Uniqueness of the solution is proved by the method of energy integral and existence is proved by the method of integral equations. In particular cases, eigenvalues and corresponding eigenfunctions of the studied problems are found. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper, we consider a nonhomogeneous space‐time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the first‐order or second‐order time derivative by the Caputo fractional derivative , α > 0 and the Laplacian operator by the fractional Laplacian ( ? Δ)β ∕ 2, β ∈ (0,2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate Mittag‐Leffler type functions. Special cases of solutions are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we design and analyze a numerical scheme for solving the generalized time‐fractional Telegraph‐type equation (GTFTTE) which is defined using the generalized time fractional derivative (GTFD) proposed recently by Agrawal. The GTFD involves the scale and the weight functions, and reduces to the traditional Caputo derivative for a particular choice of the weight and the scale functions. The scale and the weight functions play an important role in describing the behavior of real‐life physical systems and thus we study the solution behavior of the GTFTTE by varying the weight and the scale functions in the GTFD. We investigate the solution profile of the GTFTTE under some of these choices. We also provide the stability and the convergence analysis of the proposed numerical scheme for the GTFTTE. We consider two test examples to perform numerical simulations.  相似文献   

5.
We find the conditions for the unique solvability of the inverse problem for a time‐fractional diffusion equation with Schwarz‐type distributions in the right‐hand sides. This problem is to find a generalized solution of the Cauchy problem and an unknown space‐dependent part of an equation's right‐hand side under a time‐integral overdetermination condition.  相似文献   

6.
We consider a Euler–Bernoulli beam equation with a boundary control condition of fractional derivative type. We study stability of the system using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In a rectangular domain, a boundary-value problem is considered for a mixed equation with a regularized Caputo-like counterpart of hyper-Bessel differential operator and the bi-ordinal Hilfer's fractional derivative. By using the method of separation of variables a unique solvability of the considered problem has been established. Moreover, we have found the explicit solution of initial-boundary problems for the heat equation with the regularized Caputo-like counterpart of the hyper-Bessel differential operator with the non-zero starting point.  相似文献   

8.
This article discusses the spectral collocation method for numerically solving nonlocal problems: one‐dimensional space fractional advection–diffusion equation; and two‐dimensional linear/nonlinear space fractional advection–diffusion equation. The differentiation matrixes of the left and right Riemann–Liouville and Caputo fractional derivatives are derived for any collocation points within any given bounded interval. Several numerical examples with different boundary conditions are computed to verify the efficiency of the numerical schemes and confirm the exponential convergence; the physical simulations for Lévy–Feller advection–diffusion equation and space fractional Fokker–Planck equation with initial δ‐peak and reflecting boundary conditions are performed; and the eigenvalue distributions of the iterative matrix for a variety of systems are displayed to illustrate the stabilities of the numerical schemes in more general cases. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 514–535, 2014  相似文献   

9.
In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ?Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space .  相似文献   

10.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

11.
12.
An inverse problem of determining a time‐dependent source term from the total energy measurement of the system (the over‐specified condition) for a space‐time fractional diffusion equation is considered. The space‐time fractional diffusion equation is obtained from classical diffusion equation by replacing time derivative with fractional‐order time derivative and Sturm‐Liouville operator by fractional‐order Sturm‐Liouville operator. The existence and uniqueness results are proved by using eigenfunction expansion method. Several special cases are discussed, and particular examples are provided.  相似文献   

13.
We study the relationship between the solutions of abstract differential equations with fractional derivatives and their stability with respect to the perturbation by a bounded operator. Besides, we obtain representations for the solution of an inhomogeneous equation and for an equation containing a fractional power of the generator of a cosine operator function.  相似文献   

14.
This paper has focused on unknown functions identification in nonlinear boundary conditions of an inverse problem of a time‐fractional reaction–diffusion–convection equation. This inverse problem is generally ill‐posed in the sense of stability, that is, the solution of problem does not depend continuously on the input data. Thus, a combination of the mollification regularization method with Gauss kernel and a finite difference marching scheme will be introduced to solve this problem. The generalized cross‐validation choice rule is applied to find a suitable regularization parameter. The stability and convergence of the numerical method are investigated. Finally, two numerical examples are provided to test the effectiveness and validity of the proposed approach.  相似文献   

15.
In this article, we discuss a conformable fractional Sturm‐Liouville boundary‐value problem. We prove an existence and uniqueness theorem for this equation and formulate a self‐adjoint boundary value problem. We also construct the associated Green function of this problem, and we give the eigenfunction expansions. Finally, we will give some examples.  相似文献   

16.
We develop a space-time fractional Schrödinger equation containing Caputo fractional derivative and the quantum Riesz fractional operator from a space fractional Schrödinger equation in this paper. By use of the new equation we study the time evolution behaviors of the space-time fractional quantum system in the time-independent potential fields and two cases that the order of the time fractional derivative is between zero and one and between one and two are discussed respectively. The space-time fractional Schrödinger equation with time-independent potentials is divided into a space equation and a time one. A general solution, which is composed of oscillatory terms and decay ones, is obtained. We investigate the time limits of the total probability and the energy levels of particles when time goes to infinity and find that the limit values not only depend on the order of the time derivative, but also on the sign (positive or negative) of the eigenvalues of the space equation. We also find that the limit value of the total probability can be greater or less than one, which means the space-time fractional Schrödinger equation describes the quantum system where the probability is not conservative and particles may be extracted from or absorbed by the potentials. Additionally, the non-Markovian time evolution laws of the space-time fractional quantum system are discussed. The formula of the time evolution of the mechanical quantities is derived and we prove that there is no conservative quantities in the space-time fractional quantum system. We also get a Mittag-Leffler type of time evolution operator of wave functions and then establish a Heisenberg equation containing fractional operators.  相似文献   

17.
利用锥拉伸和压缩不动点定理,研究了一类具有Riemann-Liouvile分数阶积分条件的分数阶微分方程组边值问题.结合该问题相应Green函数的性质,获得了其正解的存在性条件,并给出了一些应用实例.  相似文献   

18.
19.
In this article, a local discontinuous Galerkin (LDG) method is studied for numerically solving the fractal mobile/immobile transport equation with a new time Caputo–Fabrizio fractional derivative. The stability of the LDG scheme is proven, and a priori error estimates with the second‐order temporal convergence rate and the (k + 1) th order spatial convergence rate are derived in detail. Finally, numerical experiments based on Pk, k = 0, 1, 2, 3, elements are provided to verify our theoretical results.  相似文献   

20.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号