首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider an optimal control problem posed on a domain with a highly oscillating smooth boundary where the controls are applied on the oscillating part of the boundary. There are many results on domains with oscillating boundaries where the oscillations are pillar‐type (non‐smooth) while the literature on smooth oscillating boundary is very few. In this article, we use appropriate scaling on the controls acting on the oscillating boundary leading to different limit control problems, namely, boundary optimal control and interior optimal control problem. In the last part of the article, we visualize the domains as a branched structure, and we introduce unfolding operators to get contributions from each level at every branch.  相似文献   

2.
We consider the elasticity problem in a domain with contact on multiple periodic open cracks. The contact is described by the Signorini and Coulomb‐friction conditions. The problem is nonlinear, the dissipative functional depends on the unknown solution, and the existence of the solution for fixed period of the structure is usually proven by the fix‐point argument in the Sobolev spaces with a little higher regularity, H1+α. We rescaled norms, trace, jump, and Korn inequalities in fractional Sobolev spaces with positive and negative exponents, using the unfolding technique, introduced by Griso, Cioranescu, and Damlamian. Then we proved the existence and uniqueness of the solution for friction and period fixed. Then we proved the continuous dependency of the solution to the problem with Coulomb's friction on the given friction and then estimated the solution using fixed‐point theorem. However, we were not able to pass to the strong limit in the frictional dissipative term. For this reason, we regularized the problem by adding a fourth‐order term, which increased the regularity of the solution and allowed the passing to the limit. This can be interpreted as micro‐polar elasticity.  相似文献   

3.
This article introduces an interior optimal control problem (OCP) in a two-dimensional domain with a highly oscillatory boundary governed by the stationary Stokes equations. We consider the periodic controls in the oscillating region of the domain and use the unfolding operators to characterize the optimal controls. We establish the convergences of optimal control, state, and pressure in a suitable space to the ones of the limit system in a fixed domain.  相似文献   

4.
S. Aiyappan 《Applicable analysis》2013,92(16):2783-2801
We consider a Dirichlet boundary control problem posed in an oscillating boundary domain governed by a biharmonic equation. Homogenization of a PDE with a non-homogeneous Dirichlet boundary condition on the oscillating boundary is one of the hardest problems. Here, we study the homogenization of the problem by converting it into an equivalent interior control problem. The convergence of the optimal solution is studied using periodic unfolding operator.  相似文献   

5.
An optimal boundary control problem in a domain with oscillating boundary has been investigated in this paper. The controls are acting periodically on the oscillating boundary. The controls are applied with suitable scaling parameters. One of the major contribution is the representation of the optimal control using the unfolding operator. We then study the limiting analysis (homogenization) and obtain two limit problems according to the scaling parameters. Another notable observation is that the limit optimal control problem has three controls, namely, a distributed control, a boundary control, and an interface control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
We present a model arising from the thermal modelling of two metal casting processes. We consider an enthalpy formulation for this two‐phase Stefan problem in a time varying three‐dimensional domain and consider convective heat transfer in the liquid phase. Then, we introduce a weak formulation in a fixed domain, by means of a suitable transformation. Existence of solution is obtained by applying an abstract theorem. The proof of this theorem is done by taking an implicit discretization in time together with a regularization. By passing to the limit in the regularization parameter and in the time step, we obtain the existence of solution of the continuous problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we consider a model shape optimization problem. The state variable solves an elliptic equation on a star-shaped domain, where the radius is given via a control function. First, we reformulate the problem on a fixed reference domain, where we focus on the regularity needed to ensure the existence of an optimal solution. Second, we introduce the Lagrangian and use it to show that the optimal solution possesses a higher regularity, which allows for the explicit computation of the derivative of the reduced cost functional as a boundary integral. We finish the article with some second-order optimality conditions.  相似文献   

8.
We consider a coupled finite element (fe)–boundary element (be) approach for three‐dimensional magnetic field problems. The formulation is based on a vector potential in a bounded domain (fe) and a scalar potential in an unbounded domain (be). We describe a coupled variational problem yielding a unique solution where the constraints in the trial spaces are replaced by appropriate side conditions. Then we discuss a Galerkin discretization of the coupled problem and prove a quasi‐optimal error estimate. Finally we discuss an efficient preconditioned iterative solution strategy for the resulting linear system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists.  相似文献   

10.
In this paper, we consider the optimal control problem for a sixth order nonlinear parabolic equation, which arising in oil‐water‐surfactant mixtures. Based on Lions' theory, we prove the existence of optimal solution. The optimality system is also established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
M. Gugat 《Applicable analysis》2013,92(10):2200-2214
We consider an exact boundary control problem for the wave equation with given initial and terminal data and Dirichlet boundary control. The aim is to steer the state of the system that is defined on a given domain to a position of rest in finite time. The optimal control that is obtained as the solution of the problem depends on the data that define the problem, in particular on the domain. Often for the numerical solution of the control problem, this given domain is replaced by a polygon. This is the motivation to study the convergence of the optimal controls for the polygon to the optimal controls for the given domain. To study the convergence, the values of the optimal controls that are defined on the boundaries of the approximating polygons are mapped in the normal directions of the polygon to control functions defined on the boundary of the original domain. This map has already been used by Bramble and King, Deckelnick, Guenther and Hinze and by Casas and Sokolowski. Using this map, we can show the strong convergence of the transformed controls as the polygons approach the given domain. An essential tool to obtain the convergence is a regularization term in the objective functions to increase the regularity of the state.  相似文献   

12.
We study the problem of optimally controlling the solution of the obstacle problem in a domain perforated by small periodically distributed holes. The solution is controlled by the choice of a perforated obstacle which is to be chosen in such a fashion that the solution is close to a given profile and the obstacle is not too irregular. We prove existence, uniqueness and stability of an optimal obstacle and derive necessary and sufficient conditions for optimality. When the number of holes increase indefinitely we determine the limit of the sequence of optimal obstacles and solutions. This limit depends strongly on the rate at which the size of the holes shrink.  相似文献   

13.
In this work we consider an L minimax ergodic optimal control problem with cumulative cost. We approximate the cost function as a limit of evolutions problems. We present the associated Hamilton-Jacobi-Bellman equation and we prove that it has a unique solution in the viscosity sense. As this HJB equation is consistent with a numerical procedure, we use this discretization to obtain a procedure for the primitive problem. For the numerical solution of the ergodic version we need a perturbation of the instantaneous cost function. We give an appropriate selection of the discretization and penalization parameters to obtain discrete solutions that converge to the optimal cost. We present numerical results. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We consider a controlled system driven by a coupled forward–backward stochastic differential equation with a non degenerate diffusion matrix. The cost functional is defined by the solution of the controlled backward stochastic differential equation, at the initial time. Our goal is to find an optimal control which minimizes the cost functional. The method consists to construct a sequence of approximating controlled systems for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we establish the existence of a relaxed optimal control to the initial problem. The existence of a strict control follows from the Filippov convexity condition.  相似文献   

15.
This article is concerned about an optimization‐based domain decomposition method for numerical simulation of the incompressible Navier‐Stokes flows. Using the method, an classical domain decomposition problem is transformed into a constrained minimization problem for which the objective functional is chosen to measure the jump in the dependent variables across the common interfaces between subdomains. The Lagrange multiplier rule is used to transform the constrained optimization problem into an unconstrained one and that rule is applied to derive an optimality system from which optimal solutions may be obtained. The optimality system is also derived using “sensitivity” derivatives instead of the Lagrange multiplier rule. We consider a gradient‐type approach to the solution of domain decomposition problem. The results of some numerical experiments are presented to demonstrate the feasibility and applicability of the algorithm developed in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

16.
In this article we study the homogenization of an optimal control problem for a parabolic equation in a domain with highly oscillating boundary. We identify the limit problem, which is an optimal control problem for the homogenized equation and with a different cost functional.  相似文献   

17.
In this paper we consider an optimal control system described byn-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem.We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.  相似文献   

18.
In this study, we consider a viscous compressible model of plasma and semiconductors, which is expressed as a compressible Navier‐Stokes‐Poisson equation. We prove that there exists a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces in bounded domain, provided that the ratio of the electron/ions mass is appropriately small. Moreover, the zero‐electron‐mass limit of the strong solutions is rigorously verified. The main idea in the proof is to split the original equation into 4 parts, a system of stationary incompressible Navier‐Stokes equations with large forces, a system of stationary compressible Navier‐Stokes equations with small forces, coupled with 2 Poisson equations. Based on the known results about linear incompressible Navier‐Stokes equation, linear compressible Navier‐Stokes, linear transport, and Poisson equations, we try to establish uniform in the ratio of the electron/ions mass a priori estimates. Further, using Schauder fixed point theorem, we can show the existence of a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces. At the same time, from the uniform a priori estimates, we present the zero‐electron‐mass limit of the strong solutions, which converge to the solutions of the corresponding incompressible Navier‐Stokes‐Poisson equations.  相似文献   

19.
We consider a frictionless contact problem with unilateral constraints for a 2D bar. We describe the problem, then we derive its weak formulation, which is in the form of an elliptic variational inequality of the first kind. Next, we establish the existence of a unique weak solution to the problem and prove its continuous dependence with respect to the applied tractions and constraints. We proceed with the study of an associated control problem for which we prove the existence of an optimal pair. Finally, we consider a perturbed optimal control problem for which we prove a convergence result.  相似文献   

20.
The purpose of this paper is to propose and study a mathematical model and a boundary control problem associated to the miscible displacement of hydrogen through the porous anode of a PEM fuel cell. Throughout the paper, we study certain variational problems with a priori regularity properties of the weak solutions. We obtain the existence of less regular solutions and then we prove the desired regularity of these solutions. We consider a control problem that permits to determine the boundary distribution of the pressure which provides an optimal configuration for the temperature and for the concentration, as well. Since the solution of the problem is not unique, the control variable does not appear explicitly in the definition of our cost functional. To overcome this difficulty, we introduce a family of penalized control problems which approximates our boundary control problem. The necessary conditions of optimality are derived by passing to the limit in the penalized optimality conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号