首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional response of the Holling type II is incorporated into a predator–prey model with predators using hawk‐dove tactics to consider combination effects of nonlinear functional response and individual tactics. By mathematical analysis, it is shown that the model undergoes a sequence of bifurcations including saddle‐node bifurcation, supercritical Hopf bifurcation and homoclinic bifurcation. New phenomena are found that include the bistable coexistence of prey and predators in the form of a stable limit cycle and a stable positive equilibrium, the bistable coexistence of prey and predators in a large stable limit cycle that encloses three positive equilibria and a stable positive equilibrium within the cycle, and the bistable coexistence of two stable limit cycles.  相似文献   

2.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A predator–prey model was extended to include nonlinear harvesting of the predator guided by its population, such that harvesting is only implemented if the predator population exceeds an economic threshold. The proposed model is a nonsmooth dynamic system with switches between the original predator-prey model (free subsystem) and a model with nonlinear harvesting (harvesting subsystem). We initially examine the dynamics of both the free and the harvesting subsystems, and then we investigate the dynamics of the switching system using theories of nonsmooth systems. Theoretical results showed that the harvesting subsystem undergoes multiple bifurcations, including saddle-node, supercritical Hopf, Bogdanov–Takens and homoclinic bifurcations. The switching system not only retains all of the complex dynamics of the harvesting system but also exhibits much richer dynamics such as a sliding equilibrium, sliding cycle, boundary node (saddle point) bifurcation, boundary saddle-node bifurcation and buckling bifurcation. Both theoretical and numerical results showed that, by implementing predator population guided harvesting, the predator and prey population could coexist in more scenarios than those in which the predator may go extinct for the continuous harvesting regime. They could either stabilize at an equilibrium or oscillate periodically depending on the value of the economic threshold and the initial value of the system.  相似文献   

4.
In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.  相似文献   

5.
A theoretical eco‐epidemiological model of a prey–predator interaction system with disease in prey species is studied. Predator consumes both susceptible and infected prey population, but predator also feeds preferentially on many numerous species, which are over represented in the predator's diet. Equilibrium points of the system are determined, and the dynamic behaviour of the system is investigated around equilibrium points. Death rate of predator species is considered as a bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighbourhood of the coexisting equilibria. Numerical simulations are carried out to support the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey is proposed. The dissipativity of the system and the existence of all possible equilibria are investigated. The investigation emphasizes the exploring of bifurcation. It is shown that the system exists several non-hyperbolic positive equilibria, such as a weak focus of multiplicities one and two, (degenerate) saddle–nodes and Bogdanov–Takens singularities (cusp case) of codimensions 2 and 3. At these equilibria, it is proved that the system undergoes various kinds of bifurcations, such as saddle–node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation and Bogdanov–Takens bifurcation of codimensions 2 and 3. With the parameters selected properly, there exhibits a limit cycle, a homoclinic loop, two limit cycles, a semistable limit cycle, or the simultaneous occurrence of a homoclinic loop and a limit cycle in the system. Moreover, it is also proved that the system has a cusp of codimension at least 4. Hence, there may exist three limit cycles generated from Hopf bifurcation of codimension 3. Numerical simulations are done to support the theoretical results.  相似文献   

7.
A hyperbolic predator–prey model is proposed within the context of extended thermodynamics. The nature of the steady state solutions for the uniform and non‐uniform perturbations are analyzed. The existence of smooth traveling wave‐like solutions, related to the invasion of the predator population into a prey‐only state is discussed. Validation of the model in point is also accomplished by searching for numerical solutions of the system, which also points out limit cycles in the populations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
To explore the impact of pest‐control strategy through a fractional derivative, we consider three predator‐prey systems by simple modification of Rosenzweig‐MacArthur model. First, we consider fractional‐order Rosenzweig‐MacArthur model. Allee threshold phenomena into pest population is considered for the second case. Finally, we consider additional food to the predator and harvesting in prey population. The main objective of the present investigation is to observe which model is most suitable for the pest control. To achieve this goal, we perform the local stability analysis of the equilibrium points and observe the basic dynamical properties of all the systems. We observe fractional‐order system has the ability to stabilize Rosenzweig‐MacArthur model with low pest density from oscillatory state. In the numerical simulations, we focus on the bistable regions of the second and third model, and we also observe the effect of the fractional order α throughout the stability region of the system. For the third model, we observe a saddle‐node bifurcation due to the additional food and Allee effect to the pest densities. Also, we numerically plot two parameter bifurcation diagram with respect to the harvesting parameter and fractional order of the system. We finally conclude that fractional‐order Rosenzweig‐MacArthur model and the modified Rosenzweig‐MacArthur model with additional food for the predator and harvested pest population are more suitable models for the pest management.  相似文献   

9.
In this work, a bidimensional differential equation system obtained by modifying the well-known predator–prey Rosenzweig–MacArthur model is analyzed by considering prey growth influenced by the Allee effect.One of the main consequences of this modification is a separatrix curve that appears in the phase plane, dividing the behavior of the trajectories. The results show that the equilibrium in the origin is an attractor for any set of parameters. The unique positive equilibrium, when it exists, can be either an attractor or a repeller surrounded by a limit cycle, whose uniqueness is established by calculating the Lyapunov quantities. Therefore, both populations could either reach deterministic extinction or long-term deterministic coexistence.The existence of a heteroclinic curve is also proved. When this curve is broken by changing parameter values, then the origin turns out to be an attractor for all orbits in the phase plane. This implies that there are plausible conditions where both populations can go to extinction. We conclude that strong and weak Allee effects on prey population exert similar influences on the predator–prey model, thereby increasing the risk of ecological extinction.  相似文献   

10.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

11.
The consumer–resource relationships are among the most fundamental of all ecological relationships and have been the focus of ecology since its beginnings. Usually are described by nonlinear differential equation systems, putting the emphasis in the effect of antipredator behavior (APB) by the prey; nevertheless, a minor quantity of articles has considered the social behavior of predators. In this work, two predator–prey models derived from the Volterra model are analyzed, in which the equation of predators is modified considering cooperation or collaboration among predators. It is well known that competition among predators produces a stabilizing effect on system describing the model, since there exists a wide set in the parameter space where the system has a unique equilibrium point in the phase plane, which is globally asymptotically stable. Meanwhile, the cooperation can originate more complex and unusual dynamics. As we will show, it is possible to prove that for certain subset of parameter values the predator population sizes tend to infinite when the prey population goes to extinct. This apparently contradicts the idea of a realistic model, when it is implicitly assumed that the predators are specialist, ie, the prey is its unique source of food. However, this could be a desirable effect when the prey constitutes a plague. To reinforce the analytical result, numerical simulations are presented.  相似文献   

12.
In this study, we consider a mathematical model of two competing prey and one predator system where the prey species follow Lotka–Volterra‐type dynamics and the predator uptake functions are ratio dependent. We have derived the conditions for existence of different boundary equilibria and discussed their global behaviour. The sufficient condition for permanent co‐existence of all the species is derived. Finally, we have discussed the possibility of extinction of the species from the system. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

14.
In this paper, we have studied a prey–predator model living in a habitat that divided into two regions: an unreserved region and a reserved (refuge) region. The migration between these two regions is allowed. The interaction between unreserved prey and predator is Crowley–Martin‐type functional response. The local and global stability of the system is discussed. Further, the system is extended to incorporate the effect of time delay. Then the dynamical behavior of the system is analyzed, taking delay as a bifurcation parameter. The direction of Hopf bifurcation and the stability of the bifurcated periodic solution are determined with the help of normal form theory and centre manifold theorem. We have also discussed the influence of prey refuge on densities of prey and predator species. The analytical results are supplemented with numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
A delayed predator–prey system with Holling type II functional response and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibrium of the system is discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory for infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using suitable Lyapunov functions and the LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator–extinction equilibrium and the coexistence equilibrium do not exist, and that the predator–extinction equilibrium is globally stable when the coexistence equilibrium does not exist. Further, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the Allee effect is incorporated into a predator–prey model with Holling type II functional response. Compared with the predator–prey model without Allee effect, we find that the Allee effect of prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.  相似文献   

17.
This investigation accounts for epidemics spreading among interacting populations. The infective disease spreads among the prey, of which only susceptibles reproduce, while infected prey do not grow, recover, reproduce nor compete for resources. The model is general enough to describe a large number of ecosystems, on land, in the air or in the water. The main results concern the boundedness of the trajectories, the analysis of local and global stability, system's persistency and a threshold property below which the infection disappears. A sufficiently strong disease in the prey may avoid predators extinction and its presence can destabilize an otherwise stable predator‐prey configuration. The occurrence of transcritical, saddle‐node and Hopf‐bifurcations is also shown. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Stage-structured predator–prey models exhibit rich and interesting dynamics compared to homogeneous population models. The objective of this paper is to study the bifurcation behavior of stage-structured prey–predator models that admit stage-restricted predation. It is shown that the model with juvenile-only predation exhibits Hopf bifurcation with the growth rate of the adult prey as the bifurcation parameter; also, depending on parameter values, a stable limit cycle will emerge, that is, the bifurcation will be of supercritical nature. On the other hand, the analysis of the model with adult-stage predation shows that the system admits a fold-Hopf bifurcation with the adult growth rate and the predator mortality rate as the two bifurcation parameters. We also demonstrate the existence of a unique limit cycle arising from this codimension-2 bifurcation. These results reveal far richer dynamics compared to models without stage-structure. Numerical simulations are done to support analytical results.  相似文献   

19.
In this paper, a predator–prey Leslie–Gower model with disease in prey has been developed. The total population has been divided into three classes, namely susceptible prey, infected prey and predator population. We have also incorporated an infected prey refuge in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points. We have also discussed the influence of the infected prey refuge on each population density. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking refuge parameter as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.  相似文献   

20.
In this article, we investigate the effect of prey refuge and time delay on a diffusive predator‐prey system with Holling II functional response and hyperbolic mortality subject to Neumann boundary condition. More precisely, we study Turing instability of positive equilibrium by using refuge as parameter, instability and Hopf bifurcation induced by time delay. In addition, by the theory of normal form and center manifold, we derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution. © 2016 Wiley Periodicals, Inc. Complexity 21: 446–459, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号