首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The article considers a three‐dimensional crack problem in linear elasticity with Dirichlet boundary conditions. The crack in this model problem is assumed to be a smooth open surface with smooth boundary curve. The hp‐version of the boundary element method with weakly singular operator is applied to approximate the unknown jump of the traction which is not L2‐regular due to strong edge singularities. Assuming quasi‐uniform meshes and uniform distributions of polynomial degrees, we prove an a priori error estimate in the energy norm. The estimate gives an upper bound for the error in terms of the mesh size h and the polynomial degree p. It is optimal in h for any given data and quasi‐optimal in p for sufficiently smooth data. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

2.
This article studies the stability and convergence of the hp version of the three families of mixed discontinuous finite element (MDFE) methods for the numerical solution of reaction‐diffusion problems. The focus of this article is on these problems for one space dimension. Error estimates are obtained explicitly in the grid size h, the polynomial degree p, and the solution regularity; arbitrary space grids and polynomial degree are allowed. These estimates are asymptotically optimal in both h and p for some of these methods. Extensive numerical results to show convergence rates in h and p of the MDFE methods are presented. Theoretical and numerical comparisons between the three families of MDFE methods are described. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 525–553, 2003  相似文献   

3.
In this article, we investigate the application of pseudo‐transient‐continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, use the PTC‐methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction‐type PTC‐method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC ‐Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2005–2022, 2017  相似文献   

4.
We apply the hp ‐version of the boundary element method (BEM) for the numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhedral surface Γ. The underlying meshes are supposed to be quasi‐uniform triangulations of Γ, and the approximations are based on either Raviart‐Thomas or Brezzi‐Douglas‐Marini families of surface elements. Nonsmoothness of Γ leads to singularities in the solution of the EFIE, severely affecting convergence rates of the BEM. However, the singular behavior of the solution can be explicitly specified using a finite set of functions (vertex‐, edge‐, and vertex‐edge singularities), which are the products of power functions and poly‐logarithmic terms. In this article, we use this fact to perform an a priori error analysis of the hp ‐BEM on quasi‐uniform meshes. We prove precise error estimates in terms of the polynomial degree p, the mesh size h, and the singularity exponents. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

5.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999  相似文献   

6.
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

7.
We develop 2‐grid schemes for solving nonlinear reaction‐diffusion systems: where p = (p, q) is an unknown vector‐valued function. The schemes use discretizations based on a mixed finite‐element method. The 2‐grid approach yields iterative procedures for solving the nonlinear discrete equations. The idea is to relegate all the Newton‐like iterations to grids much coarser than the final one, with no loss in order of accuracy. The iterative algorithms examined here extend a method developed earlier for single reaction‐diffusion equations. An application to prepattern formation in mathematical biology illustrates the method's effectiveness. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 589–604, 1999  相似文献   

8.
《Mathematische Nachrichten》2017,290(8-9):1406-1419
In this paper we generalize minimal p‐divisible groups defined by Oort to minimal F‐crystals over algebraically closed fields of positive characteristic. We prove a structural theorem of minimal F‐crystals and give an explicit formula of the Frobenius endomorphism of the basic minimal F‐crystals that are the building blocks of the general minimal F‐crystals. We then use minimal F‐crystals to generalize minimal heights of p‐divisible groups and give an upper bound of the isomorphism numbers of F‐crystals, whose isogeny type are determined by simple F‐isocrystals, in terms of their ranks, Hodge slopes and Newton slopes.  相似文献   

9.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
In this article we apply the subdomain‐Galerkin/least squares method, which is first proposed by Chang and Gunzburger for first‐order elliptic systems without reaction terms in the plane, to solve second‐order non‐selfadjoint elliptic problems in two‐ and three‐dimensional bounded domains with triangular or tetrahedral regular triangulations. This method can be viewed as a combination of a direct cell vertex finite volume discretization step and an algebraic least‐squares minimization step in which the pressure is approximated by piecewise linear elements and the flux by the lowest order Raviart‐Thomas space. This combined approach has the advantages of both finite volume and least‐squares methods. Among other things, the combined method is not subject to the Ladyzhenskaya‐Babus?ka‐Brezzi condition, and the resulting linear system is symmetric and positive definite. An optimal error estimate in the H1(Ω) × H(div; Ω) norm is derived. An equivalent residual‐type a posteriori error estimator is also given. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 738–751, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10030.  相似文献   

11.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

12.
Given convex scattered data in R3 we consider the constrained interpolation problem of finding a smooth, minimal L p‐norm (1 < p < ∞) interpolation network that is convex along the edges of an associated triangulation. In previous work the problem has been reduced to the solution of a nonlinear system of equations. In this paper we formulate and analyse a Newton‐type algorithm for solving the corresponding type of systems. The correctness of the application of the proposed method is proved and its superlinear (in some cases quadratic) convergence is shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
A method for solving the time dependent Navier‐Stokes equations, aiming at higher Reynolds' number, is presented. The direct numerical simulation of flows with high Reynolds' number is computationally expensive. The method presented is unconditionally stable, computationally cheap, and gives an accurate approximation to the quantities sought. In the defect step, the artificial viscosity parameter is added to the inverse Reynolds number as a stability factor, and the system is antidiffused in the correction step. Stability of the method is proven, and the error estimations for velocity and pressure are derived for the one‐ and two‐step defect‐correction methods. The spacial error is O(h) for the one‐step defect‐correction method, and O(h2) for the two‐step method, where h is the diameter of the mesh. The method is compared to an alternative approach, and both methods are applied to a singularly perturbed convection–diffusion problem. The numerical results are given, which demonstrate the advantage (stability, no oscillations) of the method presented. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
We consider a two‐dimensional singularly perturbed transmission problem with two different diffusion coefficients, in a domain with smooth (analytic) boundary. The solution will contain boundary layers only in the part of the domain where the diffusion coefficient is high and interface layers along the interface. Utilizing existing and newly derived regularity results for the exact solution, we prove the robustness of an hp finite element method for its approximation. Under the assumption of analytic input data, we show that the method converges at an “exponential” rate, provided the mesh and polynomial degree distribution are chosen appropriately. Numerical results illustrating our theoretical findings are also included. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
A Menon design of order h2 is a symmetric (4h2,2h2h,h2h)‐design. Quasi‐residual and quasi‐derived designs of a Menon design have parameters 2‐(2h2 + h,h2,h2h) and 2‐(2h2h,h2h,h2h‐1), respectively. In this article, regular Hadamard matrices are used to construct non‐embeddable quasi‐residual and quasi‐derived Menon designs. As applications, we construct the first two new infinite families of non‐embeddable quasi‐residual and quasi‐derived Menon designs. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 53–62, 2009  相似文献   

16.
In this paper, we consider domain decomposition preconditioners for a system of linear algebraic equations arising from the p‐version of the FEM. We analyse several multi‐level preconditioners for the Dirichlet problems in the sub‐domains in two and three dimensions. It is proved that the condition number of the preconditioned system is bounded by a constant independent of the polynomial degree. Relations between the p‐version of the FEM and the h‐version are helpful in the interpretations of the results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we study the existence of infinitely many solutions to p‐Kirchhoff‐type equation (0.1) where f(x,u) = λh1(x)|u|m ? 2u + h2(x)|u|q ? 2u,a≥0,μ > 0,τ > 0,λ≥0 and . The potential function verifies , and h1(x),h2(x) satisfy suitable conditions. Using variational methods and some special techniques, we prove that there exists λ0>0 such that problem 0.1 admits infinitely many nonnegative high‐energy solutions provided that λ∈[0,λ0) and . Also, we prove that problem 0.1 has at least a nontrivial solution under the assumption f(x,u) = h2|u|q ? 2u,p < q< min{p*,p(τ + 1)} and has infinitely many nonnegative solutions for f(x,u) = h1|u|m ? 2u,1 < m < p. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all 3 ≤ l ≤ |V (D) |. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that p(D) ≥ h(D). Moon showed that h(T) ≥ 3 for all strong non‐trivial tournaments, T, and Havet showed that h(T) ≥ 5 for all 2‐strong tournaments T. We will show that if T is a k‐strong tournament, with k ≥ 2, then p(T) ≥ 1/2, nk and h(T) ≥ (k + 5)/2. This solves a conjecture by Havet, stating that there exists a constant αk, such that p(T) ≥ αk n, for all k‐strong tournaments, T, with k ≥ 2. Furthermore, the second results gives support for the conjecture h(T) ≥ 2k + 1, which was also stated by Havet. The previously best‐known bounds when k ≥ 2 were p(T) ≥ 2k + 3 and h(T) ≥ 5. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

19.
In this paper, we establish the existence and non‐existence of positive solutions for p‐Kirchhoff type problems with a parameter on without assuming the usual compactness conditions. We show that the p‐Kirchhoff type problems have at least one positive solution when the parameter is small, while the p‐Kirchhoff type problems have no positive solutions when the parameter is large. Our argument is based on variational methods, monotonicity methods, cut‐off functional techniques, and a priori estimates techniques. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Let h : ? → ? be a computable function. A real number x is called h‐monotonically computable (h‐mc, for short) if there is a computable sequence (xs) of rational numbers which converges to x h‐monotonically in the sense that h(n)|xxn| ≥ |xxm| for all n andm > n. In this paper we investigate classes hMC of h‐mc real numbers for different computable functions h. Especially, for computable functions h : ? → (0, 1)?, we show that the class hMC coincides with the classes of computable and semi‐computable real numbers if and only if Σi∈?(1 – h(i)) = ∞and the sum Σi∈?(1 – h(i)) is a computable real number, respectively. On the other hand, if h(n) ≥ 1 and h converges to 1, then hMC = SC (the class of semi‐computable reals) no matter how fast h converges to 1. Furthermore, for any constant c > 1, if h is increasing and converges to c, then hMC = cMC . Finally, if h is monotone and unbounded, then hMC contains all ω‐mc real numbers which are g‐mc for some computable function g. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号