首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a class of impulsive fractional differential systems with finite delay is considered. Some sufficient conditions for the finite-time stability of above systems are obtained by using generalized Bellman–Gronwall’s inequality, which extend some known results.  相似文献   

2.
In this article, new trends of analysis on existence, uniqueness, and stability of solution for semi-linear fractional systems are considered. The results are based on a generalization of Bihari's inequality. Some examples are given to illustrate the results.  相似文献   

3.
In this article, a brief stability analysis of equilibrium points in nonlinear fractional order dynamical systems is given. Then, based on the first integral concept, a definition of planar Hamiltonian systems with fractional order introduced. Some interesting properties of these fractional Hamiltonian systems are also presented. Finally, we illustrate two examples to see the differences between fractional Hamiltonian systems with their classical order counterparts.© 2014 Wiley Periodicals, Inc. Complexity 21: 93–99, 2015  相似文献   

4.
In this letter we propose a class of linear fractional difference equations with discrete-time delay and impulse effects. The exact solutions are obtained by use of a discrete Mittag-Leffler function with delay and impulse. Besides, we provide comparison principle, stability results and numerical illustration.  相似文献   

5.
In this paper, the ‐expansion method is proposed to establish hyperbolic and trigonometric function solutions for fractional differential‐difference equations with the modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential‐difference equation into its differential‐difference equation of integer order. We obtain the hyperbolic and periodic function solutions of the nonlinear time‐fractional Toda lattice equations and relativistic Toda lattice system. The proposed method is more effective and powerful for obtaining exact solutions for nonlinear fractional differential–difference equations and systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the existence of solutions to nonlinear fractional order differential coupled systemswith the classical nonlocal initial conditions.We introduce a useful vector norm, named β·B‐vector norm,which is not only a novelty but also provides another way to deal with a large number of problems not limit to integer and noninteger differential systems and singular integral systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Sufficient conditions are given for asymptotic stability of the linear differential system x′  =  B(t)x with B(t) being a 2  ×  2 matrix. All components of B(t) are not assumed to be positive. The matrix B(t) is naturally divisible into a diagonal matrix D(t) and an anti-diagonal matrix A(t). Our concern is to clarify a positive effect of the anti-diagonal part A(t)x on the asymptotic stability for the system x′  =  B(t)x.   相似文献   

8.
9.
Locally-one-dimensional difference schemes for the fractional diffusion equation in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.  相似文献   

10.
The purpose of this paper is to discuss basic results of boundary value problems of fractional differential equations (BVP-FDEs) via the concept of Caputo fractional derivative with respect to another function with the order α(1,2). The existence and uniqueness results of a solution for BVP-FDEs are discussed by utilizing Banach fixed point theorem and Schaefer's fixed point theorem. We also provide new sufficient conditions to guarantee the Hyers-Ulam stability and the Hyers–Ulam–Rassias stability of BVP-FDEs. Furthermore, some concrete examples to consolidate the obtained results are also considered.  相似文献   

11.
In this paper, we establish some criteria for boundedness, stability properties, and separation of solutions of autonomous nonlinear nabla Riemann-Liouville scalar fractional difference equations. To derive these results, we prove the variation of constants formula for nabla Riemann-Liouville fractional difference equations.  相似文献   

12.
The existence of solutions y to a linear differential or difference system whose components $y_{i_1 } ,...,y_{i_m } $ belong to a given class of functions and the problem of constructing such components are considered.  相似文献   

13.
14.
15.
This paper discusses the problem of stability and periodic behaviour of linear planar difference systems appearing in modelling of discrete problems of population biology and Hopfield neural networks. We concentrate especially on procedures, which enable to formulate optimal (i.e. necessary and sufficient) conditions guaranteing such a behaviour. As a main tool, we analyse in detail location of zeros of characteristic polynomials with respect to the unit circle. From this viewpoint, derived results contribute also to the polynomial theory. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We present sufficient conditions for the stability of the nonautonomous difference system , kZ+, with m?1, when the (n×n)-matrices Aj(⋅) are slowly varying coefficients. The proposed approach is based on the generalization of the “freezing” method for ordinary differential equations. The stability conditions are formulated in terms of the corresponding Cauchy's function.  相似文献   

17.
In this paper, we develop a high‐order finite difference scheme for the solution of a time fractional partial integro‐differential equation with a weakly singular kernel. The fractional derivative is used in the Riemann‐Liouville sense. We prove the unconditional stability and convergence of scheme using energy method and show that the convergence order is . We provide some numerical experiments to confirm the efficiency of suggested scheme. The results of numerical experiments are compared with analytical solutions to show the efficiency of proposed scheme. It is illustrated that the numerical results are in good agreement with theoretical ones.  相似文献   

18.
In modeling practical systems, it can be efficient to apply Poisson process and Wiener process to represent the abrupt changes and the environmental noise, respectively. Therefore, we consider the systems affected by these random processes and investigate their joint effects on stability. In order to apply Lyapunov stability method, we formulate the action of the infinitesimal generator corresponding to such a system. Then, we derive the almost sure stability conditions by using some fundamental convergence theorem. To illustrate the theoretical results, we construct an example to show that it is possible to achieve stabilization by using random perturbations.  相似文献   

19.
In this paper, several analytical and numerical approaches are presented for the stability analysis of linear fractional-order delay differential equations. The main focus of interest is asymptotic stability, but bounded-input bounded-output (BIBO) stability is also discussed. The applicability of the Laplace transform method for stability analysis is first investigated, jointly with the corresponding characteristic equation, which is broadly used in BIBO stability analysis. Moreover, it is shown that a different characteristic equation, involving the one-parameter Mittag-Leffler function, may be obtained using the well-known method of steps, which provides a necessary condition for asymptotic stability. Stability criteria based on the Argument Principle are also obtained. The stability regions obtained using the two methods are evaluated numerically and comparison results are presented. Several key problems are highlighted.  相似文献   

20.
A finite difference method for fractional partial differential equation   总被引:1,自引:0,他引:1  
An implicit unconditional stable difference scheme is presented for a kind of linear space–time fractional convection–diffusion equation. The equation is obtained from the classical integer order convection–diffusion equations with fractional order derivatives for both space and time. First-order consistency, unconditional stability, and first-order convergence of the method are proven using a novel shifted version of the classical Grünwald finite difference approximation for the fractional derivatives. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号