首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Weber  K. Kolk  G. Kuhn 《PAMM》2006,6(1):203-204
The combination of fast methods for the boundary element method (BEM) for efficient crack growth analyzes is presented. Due to the nonlinearity of fatigue crack growth an incremental procedure has to be applied. Within each increment a stress analysis is needed. Based on the asymptotic stress field the stress intensity factors (SIFs) are calculated by an extrapolation method. Then, a new crack front is determined by a reliable 3D crack growth criterion. Finally, the numerical model has to be updated for the next increment. The time dominant factor in each increment is the computation of the stress field. Due to the stress concentration problem the BEM is utilized. To speed-up the calculation several independent fast methods are exploited. An algebraic technique is the adaptive cross approximation (ACA) method which is acting on the system matrix itself. The application of the substructure technique leads to a blockwise band matrix and therefore to reduced memory requirements. Further savings in memory and computation time are reached by modelling cracks with the dual discontinuity method (DDM) and using the ACA method in each substructure. The efficiency of the combined methods is shown by a complex industrial example. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Matthias Messner  Martin Schanz 《PAMM》2008,8(1):10309-10310
Elastodynamic phenomena can be effectively analyzed by using the Boundary Element Method (BEM), especially in unbounded media. However, for the simulation of such problems, beside others, two difficulties restrict the BEM to rather small or medium–sized problems. Firstly, one has to deal with dense matrices and secondly the treatment of the kernel functions is very costly. Several approaches have been developed to overcome these drawbacks. Approaches, such as Fast Multipole and Panel Clustering etc. gain their efficiency basically from an analytic kernel approximation. The main difficulty of these methods is that the so called degenerate kernel has to be known explicitly. Hence, the present work focuses on a purely algebraic approach, the adaptive cross approximation (ACA). By means of a geometrical clustering and a reliable admissibility condition, first, a so called hierarchical matrix structure is set up. Then each admissible block can be represented by a low–rank approximation. The advantage of the ACA is based on the fact that only a few of the original matrix entries have to be generated. As will be shown numerically, the presented approach is suitable for an efficient simulation of elastodynamic problems. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper attaches a frame to a natural class of combinatorial problems and points out that this class includes many important special cases.

A matrix M is said to avoid a set of matrices if M does not contain any element of as (ordered) submatrix. For a fixed set of matrices, we consider the problem of deciding whether the rows and columns of a matrix can be permuted in such a way that the resulting matrix M avoids all matrices in .

We survey several known and new results on the algorithmic complexity of this problem, mostly dealing with (0,1)-matrices. Among others, we will prove that the problem is polynomial time solvable for many sets containing a single, small matrix and we will exhibit some example sets for which the problem is NP-complete.  相似文献   


4.
We introduce a new method for computing eigenvalues of the Maxwell operator with boundary finite elements. On bounded domains with piecewise constant material coefficients, the Maxwell solution for fixed wave number can be represented by boundary integrals, which allows to reduce the eigenvalue problem to a nonlinear problem for determining the wave number along with boundary and interface traces. A Galerkin discretization yields a smooth nonlinear matrix eigenvalue problem that is solved by Newton's method or, alternatively, the contour integral method. Several numerical results including an application to the band structure computation of a photonic crystal illustrate the efficiency of this approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This note outlines an algorithm for solving the complex ‘matrix Procrustes problem’. This is a least‐squares approximation over the cone of positive semi‐definite Hermitian matrices, which has a number of applications in the areas of Optimization, Signal Processing and Control. The work generalizes the method of Allwright (SIAM J. Control Optim. 1988; 26 (3):537–556), who obtained a numerical solution to the real‐valued version of the problem. It is shown that, subject to an appropriate rank assumption, the complex problem can be formulated in a real setting using a matrix‐dilation technique, for which the method of Allwright is applicable. However, this transformation results in an over‐parametrization of the problem and, therefore, convergence to the optimal solution is slow. Here, an alternative algorithm is developed for solving the complex problem, which exploits fully the special structure of the dilated matrix. The advantages of the modified algorithm are demonstrated via a numerical example. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. For large scale problems, we propose new correction equations for a Jacobi-Davidson type method, that also forces real valued critical delays. We present two different equations: one complex valued equation using a direct linear system solver, and one Jacobi-Davidson style correction equation which is suitable for an iterative linear system solver. A numerical example of a large scale problem arising from PDEs shows the effectiveness of the method. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This paper is devoted to the fast solution of boundary integral equations on unstructured meshes by the Galerkin scheme. Since traditional discretizations yield densely populated system matrices it is necessary to use fast techniques like ACA, the multipole method or wavelet matrix compression, which will be the topic of the present paper. On the given, possibly unstructered, mesh we construct a wavelet basis providing vanishing moments with respect to the traces of polynomials in the space. With this basis at hand, the system matrix in wavelet coordinates can be compressed to 𝒪(N logN ) relevant matrix coefficients, where N denotes the number of unknowns. The compressed system matrix can be computed within suboptimal complexity by using fast multipole or ℋ︁-matrix techniques. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) approach when structured matrices are involved and a similarly structured rank deficient approximation of that matrix is desired. In many of those cases the STLS approach yields a Maximum Likelihood (ML) estimate as opposed to, e.g., TLS.In this paper we analyze the STLS problem for Hankel matrices (the theory can be extended in a straightforward way to Toeplitz matrices, block Hankel and block Toeplitz matrices). Using a particular parametrisation of rank-deficient Hankel matrices, we show that this STLS problem suffers from multiple local minima, the properties of which depend on the parameters of the new parametrisation. The latter observation makes initial estimates an important issue in STLS problems and a new initialization method is proposed. The new initialization method is applied to a speech compression example and the results confirm the improved performance compared to other previously proposed initialization methods.  相似文献   

9.
Lagrange基函数的复矩阵有理插值及连分式插值   总被引:1,自引:0,他引:1  
1引言 矩阵有理插值问题与系统线性理论中的模型简化问题和部分实现问题有着紧密的联系~[1][2],在矩阵外推方法中也常常涉及线性或有理矩阵插值问题~[3]。按照文~[1]的阐述。目前已经研究的矩阵有理插值问题包括矩阵幂级数和Newton-Pade逼近。Hade逼近,联立Pade逼近,M-Pade逼近,多点Pade逼近等。显然,上述各种形式的矩阵Pade逼上梁山近是矩  相似文献   

10.
In this paper, we propose a new robust model predictive control (MPC) method for time-varying uncertain systems with input constraints. We formulate the problem as a minimization of the worst-case finite-horizon cost function subject to a new sufficient condition for cost monotonicity. The proposed MPC technique uses relaxation matrices to derive a less conservative terminal inequality condition. The relaxation matrices improve feasibility and system performance. The optimization problem is solved by semidefinite programming involving linear matrix inequalities (LMIs). A numerical example shows the effectiveness of the proposed method. The authors thank the associate editor and two anonymous referees for careful reading and useful suggestions.  相似文献   

11.
Hybrid cross approximation of integral operators   总被引:2,自引:0,他引:2  
The efficient treatment of dense matrices arising, e.g., from the finite element discretisation of integral operators requires special compression techniques. In this article we use the -matrix representation that approximates the dense stiffness matrix in admissible blocks (corresponding to subdomains where the underlying kernel function is smooth) by low-rank matrices. The low-rank matrices are assembled by a new hybrid algorithm (HCA) that has the same proven convergence as standard interpolation but also the same efficiency as the (heuristic) adaptive cross approximation (ACA).  相似文献   

12.
A fast direct solution method for a discretized vector‐valued elliptic partial differential equation with a divergence constraint is considered. Such problems are typical in many disciplines such as fluid dynamics, elasticity and electromagnetics. The method requires the problem to be posed in a rectangle and boundary conditions to be either periodic boundary conditions or the so‐called slip boundary conditions in one co‐ordinate direction. The arising saddle‐point matrix has a separable form when bilinear finite elements are used in the discretization. Based on a result for so‐called p‐circulant matrices, the saddle‐point matrix can be transformed into a block‐diagonal form by fast Fourier transformations. Thus, the fast direct solver has the same structure as methods for scalar‐valued problems which are based on Fourier analysis and, therefore, it has the same computational cost ??(N log N). Numerical experiments demonstrate the good efficiency and accuracy of the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper uses Daubechies orthogonal wavelets to change dense and fully populated matrices of boundary element method (BEM) systems into sparse and semi‐banded matrices. Then a novel algorithm based on hierarchical nature of multiresolution analysis is introduced to solving resultant sparse linear systems. This algorithm decomposes NS‐form of transformed parent matrix into descendant systems with reduced sizes and solves them iteratively using GMRES algorithm. Both parts, changing dense matrices to sparse systems and the novel solver, can be added as a black box to the existing BEM codes. Transforming matrices into wavelet space needs less time than saved by solving sparse large systems. Numerical results with a precise study on sensitivity of solution for physical variables to the thresholding parameter, and savings in computer time and memory are presented. Also, the suitable value for thresholding parameter is recommended for elasticity problems. The results indicate that the proposed method is efficient for large problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In the present paper inhomogeneous bi-anisotropic materials characterized by matrices of electric permittivity, magnetic permeability and magnetoelectric characteristics are considered. All elements of these matrices are functions of the position in three dimensional space. The time-dependent Maxwell’s equations describe the electromagnetic wave propagation in these materials. Maxwell’s equations together with zero initial data are analyzed and a statement of the initial value problem (IVP) is formulated. This IVP is reduced to the IVP for a symmetric hyperbolic system of partial differential equations of the first order. Applying the theory of a symmetric hyperbolic system, new existence, uniqueness and stability estimate theorems have been obtained for the IVP of Maxwell’s equations in inhomogeneous bi-anisotropic materials.  相似文献   

15.
Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each of which a dense block is treated. The blocks must be large enough to achieve a high computational speed, but not too large, because this will lead to a large increase in both the computing time and the storage. A special “locally optimized reordering algorithm” (LORA) is described, which reorders the matrix so that dense blocks can be constructed and treated with some standard software, say LAPACK or NAG. These ideas are implemented for linear least-squares problems. The rectangular matrices (that appear in such problems) are decomposed by an orthogonal method. Results obtained on a CRAY C92A computer demonstrate the efficiency of using large dense blocks.  相似文献   

16.
Khrushchev's formula is the cornerstone of the so‐called Khrushchev theory, a body of results which has revolutionized the theory of orthogonal polynomials on the unit circle. This formula can be understood as a factorization of the Schur function for an orthogonal polynomial modification of a measure on the unit circle. No such formula is known in the case of matrix‐valued measures. This constitutes the main obstacle to generalize Khrushchev theory to the matrix‐valued setting, which we overcome in this paper. It was recently discovered that orthogonal polynomials on the unit circle and their matrix‐valued versions play a significant role in the study of quantum walks, the quantum mechanical analogue of random walks. In particular, Schur functions turn out to be the mathematical tool which best codify the return properties of a discrete time quantum system, a topic in which Khrushchev's formula has profound and surprising implications. We will show that this connection between Schur functions and quantum walks is behind a simple proof of Khrushchev's formula via “quantum” diagrammatic techniques for CMV matrices. This does not merely give a quantum meaning to a known mathematical result, since the diagrammatic proof also works for matrix‐valued measures. Actually, this path‐counting approach is so fruitful that it provides different matrix generalizations of Khrushchev's formula, some of them new even in the case of scalar measures. Furthermore, the path‐counting approach allows us to identify the properties of CMV matrices which are responsible for Khrushchev's formula. On the one hand, this helps to formalize and unify the diagrammatic proofs using simple operator theory tools. On the other hand, this is the origin of our main result which extends Khrushchev's formula beyond the CMV case, as a factorization rule for Schur functions related to general unitary operators.© 2016 Wiley Periodicals, Inc.  相似文献   

17.
形状优化的全解析敏度分析   总被引:6,自引:0,他引:6  
在形状优化设计中,建立了边界元的全解析敏度分析技术,并将该技术与通用的形状优化设计算法相结合,对二维平面应力下的弹性体进行形状优化。在优化该文的例题时,用加权求和法处理该例题的多目标问题,最后获得满意的结果。  相似文献   

18.
19.
We are interested in the quadratic eigenvalue problem of damped oscillations where the damping matrix has dimension one. This describes systems with one point damper. A generic example is a linearn-mass oscillator fixed on one end and damped on the other end. We prove that in this case the system parameters (mass and spring constants) are uniquely (up to a multiplicative constant) determined by any given set of the eigenvalues in the left half plane. We also design an effective construction of the system parameters from the spectral data. We next propose an efficient method for solving the Ljapunov equation generated by arbitrary stiffness and mass matrices and a one dimensional damping matrix. The method is particularly efficient if the Ljapunov equation has to be solved many times where only the damping dyadic is varied. In particular, the method finds an optimal position of a damper in some 60n 3 operations. We apply this method to our generic example and show, at least numerically, that the damping is optimal (in the sense that the solution of a corresponding Ljapunov equation has a minimal trace) if all eigenvalues are brought together. We include some perturbation results concerning the damping factor as the varying parameter. The results are hoped to be of some help in studying damping matrices of the rank much smaller than the dimension of the problem.  相似文献   

20.
A class of matrices, defined by a displacement rank property, is introduced. Completion and extension problems are studied for matrices in this class, under certain positivity constraints. The extension problem is reduced to a standard interpolation problem for Schur matrix valued functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号